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Abstract

Multiple-choice questions (MCQs) are the predominant form of assessment in
educational environments, known for their efficiency and scalability. Traditionally,
these questions are crafted by instructors, a method that despite its expertise
often results in inconsistencies and errors. In response to these limitations and
the need for scalability, learnersourcing has been leveraged, which involves
students in the question creation process. Although this method capitalizes on
the diverse perspectives of students, it also leads to significant variability in the
quality of the questions produced. Additionally, while recent advances in artificial
intelligence have facilitated more scalable and automated methods for
generating MCQs, these AI-driven methods still suffer from many of the same
shortcomings as those created by humans. Current evaluation methods for
MCQs predominantly rely on human judgment, which introduces subjectivity and
lacks scalability. While automated evaluation methods provide scalability, they
fall short in adequately assessing the educational value of questions, focusing
instead on surface-level features that do not match expert evaluation.

In this thesis, I explore various methods for creating and evaluating
educational content, grounded in learning science research and guided by the
use of rubrics. I demonstrate that students, with minimal scaffolding and
technological support, are capable of generating high-quality assessments. I
have also investigated the potential of involving both students and crowdworkers
in the generation and evaluation of the skills required to solve problems. Building
on this, we developed a new method that leverages LLMs to enhance the
efficiency and accuracy of these processes. Furthermore, I have shown that
crowdworkers can effectively use rubrics to evaluate questions with a level of
accuracy comparable to human experts. Through these crowdsourcing and
learnersourcing studies, I examine how specialized knowledge and expertise
influence the success of content creation and evaluation. This work culminates
in the proposal of the Scalable Automatic Question Usability Evaluation Toolkit
(SAQUET), a new standardized method for evaluating educational MCQs.

This work contributes to the fields of educational technology, learning
sciences, and human-computer interaction. By harnessing the capabilities of
crowdsourcing, learnersourcing, and generative AI, this research demonstrates
how the generation and evaluation of educational content can be vastly
improved. It introduces a standardized approach to assessment processes,
enhancing the quality and consistency of educational evaluations across various
domains. By providing a scalable framework that leverages advancements in
generative AI, this work propels the field of educational technology forward,
addressing critical challenges related to the creation and evaluation of
assessments. Ultimately, these contributions offer a foundation for future
innovations in educational content development and quality assurance.
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Chapter 1: Introduction
Assessments are foundational to education, but creating high-quality
assessments is a challenging endeavor. Multiple-choice questions (MCQs) are
the most commonly used form of assessment, relied upon extensively due to
their efficiency and scalability [63]. Despite their widespread use, even experts in
the field continue to struggle with the process of designing effective MCQs.
Experts may face difficulties in ensuring that questions accurately measure
comprehension without ambiguity, crafting distractors that are plausible yet
clearly incorrect, and aligning each question with specific learning objectives, all
of which require an understanding of both the subject matter and effective
pedagogical strategies [105].

Despite the expertise typically required for generating MCQs, students in
various online courses have been employed to create these assessments,
thereby mitigating potential expert blind spots. This is known as learnersourcing,
where students engage in an educational activity that produces data which can
be used by future learners [110]. Numerous systems have been developed to
facilitate this process, enabling students to generate millions of questions,
including MCQs and short-answer questions [58, 109, 192, 227, 237]. However,
while learnersourcing taps into a diverse human resource, it introduces its own
challenges related to maintaining question quality and managing the time
required for question generation.

Over the past decade, automatic methods for creating educational MCQs
using natural language processing (NLP) techniques have significantly improved,
enabling a mass production of MCQs across any domain [170]. The advent of
Large Language Models (LLMs) has particularly enhanced the ease of generating
assessments, especially MCQs. These automated methods vary in approach;
some require a document to provide context, while others operate with just a
simple prompt, enabling a pretrained model to generate questions [75]. This
flexibility has made the process of creating MCQs more accessible and efficient
than ever before.

While various methods of MCQ creation exist, including those by experts,
students, and AI, each approach has its own unique set of flaws as well as some
that overlap. For example, an expert instructor may unintentionally provide extra
details in the correct answer, thereby signaling its correctness. Students might
create nonsensical distractors, and AI-generated questions could include
unnecessary information in the question stem. Furthermore, questions generated
by any method often focus on lower levels of Bloom’s Revised Taxonomy,
predominantly testing recall rather than higher cognitive processes which would
be more desirable [93, 112]. Additionally, regardless of the creation method, the
alignment of questions with specific skills or knowledge components frequently
goes unaddressed. Efforts to improve this through learnersourcing the
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knowledge components have been made; however, student attempts often yield
poor outcomes. While crowd-sourced knowledge component tagging offers
some improvement, it still falls short of ideal, highlighting the pervasive
limitations across all current MCQ creation methods [161].

Current methods for evaluating the quality and the skill or knowledge
component tags of assessments rely heavily on expert human judgment, which is
both subjective and challenging [122]. Traditional tools like psychometrics and
item response theory (IRT) also come with drawbacks; they require extensive
student data and risk exposing learners to poorly designed or potentially harmful
questions [18]. While crowd-sourcing evaluations provide a more robust
alternative, this method is time consuming and expensive. Automated
approaches, although widely used, offer only superficial analysis and lack depth,
often ignoring the pedagogical implications of the questions. Consequently,
despite their widespread use, we lack effective measures of assessment quality
that are standardized and relevant across different domains. This gap highlights
the need for more reliable and efficient evaluation methods in educational
assessment.

Addressing these evolving needs, I developed a new technique in
educational assessment that automatically applies the Item-Writing Flaws (IWF)
rubric, which contains a set of criteria used to evaluate the quality of educational
MCQs [196, 221, 222]. This domain-agnostic method systematically evaluates
MCQs using the verified IWF rubric, and I demonstrate its effectiveness across a
variety of subject areas in higher education. The method, along with a related
LLM-based application of a SAQ rubric, is further evaluated against human
assessments across varying levels of expertise. Additionally, I developed a
complementary method for generating and associating skill tags with
assessment items. This dissertation details the development and effectiveness
of these methods, showcasing their application through empirical studies and
their integration into existing educational frameworks. By automating the
evaluation process and providing a robust set of criteria, these techniques
address the limitations of subjective human judgment and the lack of
standardization in traditional assessment methods. Designed for ease of use and
broad applicability, these methods offer a transformative approach for educators
and institutions aiming to enhance the reliability and validity of their
assessments.

Ultimately, the broader implications of this work are significant, making
advances in learnersourcing, educational crowdsourcing, skill tagging, and the
creation and evaluation of educational content. This work not only contributes to
the academic community but also has practical implications, enhancing how
educators and institutions assess learning outcomes using evaluated
assessment items.

16



1.1 Thesis Statement
With the proliferation of methods for creating MCQs, including experts, novices,
students, and AI, generating these questions has become more accessible than
ever before. However, these methods are far from perfect, highlighting the need
for a gold standard in evaluating question quality. This standard must surpass
the limitations of superficial automated methods and the inefficiencies of
time-consuming subjective evaluations, with a strong emphasis on the
pedagogical impact of the questions. Furthermore, there is a need to organically
improve question construction by providing actionable feedback through this
evaluation process. High-quality questions should be accessible to everyone,
valid, and reliable. These questions should also include knowledge component
data to support adaptive learning systems and learning analytics.

The core hypothesis of this research posits that it is possible to empower
individuals, regardless of their expertise or background, to create and refine
high-quality educational assessments. This work demonstrates how MCQs can
be automatically evaluated against pedagogically aligned criteria accurately and
effectively. By implementing a domain-agnostic approach, our method not only
improves the quality of MCQs, but also generates the low-level skills the question
assesses. This evaluation process not only enhances the assessments
themselves, but also elevates the capabilities of the authors, fostering better
question creation across diverse educational contexts.

1.2 Thesis Overview
This proposal progresses through chapters detailing related work (Ch. 2),
learnersourcing assessments (Ch. 3, Ch. 4), knowledge component tagging (Ch.
5, Ch. 6), equitable participation in these tasks (Ch. 7), question evaluation using
crowdsourcing (Ch. 8), automatic MCQ evaluation (Ch. 9, Ch. 10) comparison of
crowdsourcing, learnersourcing and AI rubric applications (Ch. 11), generation
and associate of skills (Ch. 12) discussion and future work (Ch. 13) and a
conclusion (Ch. 14), organized as follows:

In Chapter 2, I review literature on crowdsourcing in educational settings to
illustrate how collective intelligence shapes learning material creation and
evaluation. I then focus on learnersourcing, a specific type of crowdsourcing that
engages students in question generation. This leads to an analysis of what
defines an effective educational question, highlighting the involved knowledge
components and cognitive processes. I introduce the Item-Writing Flaws rubric,
commonly used to analyze MCQs, and compare different methods for evaluating
educational content, contrasting human judgment with automated systems. The
chapter concludes by exploring emerging trends in human-AI collaboration within
educational contexts.
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In Chapters 3 and 4 I explore how students create MCQs and short-answer
questions, analyzing the range of qualities and characteristics that may influence
their creation. My findings reveal that students are capable of producing
high-quality questions even with minimal technological support and scaffolding;
however, many questions still exhibit significant flaws. This demonstrates the
potential for students to contribute effectively to question creation, even when
participation is optional and without extensive systemic support. I examined the
need for enhanced evaluation processes to identify high-quality questions from
student contributions and guide not only students, but also other non-experts, in
developing superior educational assessments. These chapters highlight the role
of effective evaluation techniques in recognizing and fostering quality in
educational content creation, setting the stage for subsequent discussions on
proposing new methods for evaluating and refining educational assessments.

In Chapters 5 and 6, I explore two approaches aimed at improving the
knowledge component tagging process for educational assessments, utilizing
crowdsourcing and learnersourcing methods. Initially, the crowdsourcing
approach proved ineffective, despite being scaffolded and supported with
examples, prompting a reevaluation and reformulation of the task into a compare
and contrast activity. Subsequently, this revised task was tested using students in
the context of several online courses with more expertise to assess the impact of
increased knowledge on the process. However, the results remained suboptimal,
indicating that this method may not be an efficient use of students' time or
knowledge given the specific task. These findings indicate the necessity of
exploring alternative approaches that could better harness domain expertise or
technology for more effective knowledge component tagging.

In Chapter 7, I investigate the demographics and performance levels of
students participating in learnersourcing activities to assess inclusivity. I
conducted a study involving a MCQ generation activity across three courses at
two community colleges, analyzing how students' demographic data and
performance influenced their participation in these optional tasks. The results
indicated that students with higher scores in formative and summative
assessments were more likely to engage in learnersourcing. However, most of
the top 10% scorers did not participate, likely viewing the activities as
unnecessary. This pattern suggests that while many students are willing to
engage, the highest achievers who could provide the most insightful
contributions often abstain. These findings highlight the need for strategies to
foster wider and more diverse participation in learnersourcing activities to
maximize their educational impact.

In Chapter 8, I explore a crowdsourcing approach to evaluating the quality of
MCQs in the domains of mathematics and chemistry. This study involved training
crowdworkers to use the IWF rubric, assessing their ability to apply it to
questions outside their areas of expertise. The findings indicate that the majority
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of crowdworkers, despite limited domain knowledge, could accurately apply the
IWF rubric, suggesting that the rubric's scaffolding and guidelines are sufficiently
robust. While this method shows promise for an automated and scalable
evaluation system, it also presents challenges, including significant time and cost
requirements. Nevertheless, the effectiveness of the IWF rubric in aiding accurate
question evaluation across multiple dimensions opens the possibility for its
implementation through programming techniques or LLMs, enhancing its utility
and scalability.

In Chapters 9 and 10, I detail the development and evaluation of the Scalable
Automatic Question Usability Evaluation Toolkit (SAQUET), which utilizes a
combined rule- and LLM-based approach to automatically apply the 19 criteria of
the IWF rubric, as discussed in Chapters 3 and 8. This toolkit incorporates
advances in NLP to analyze components of MCQs and identify potential flaws. It
offers a domain-agnostic and scalable solution for evaluating educational MCQs
against these established criteria, overcoming shortcomings I identified in other
commonly used evaluation metrics. Through testing on questions from a variety
of distinct academic domains, we demonstrate SAQUET’s accuracy and
effectiveness. The results indicate that this approach could significantly enhance
the accuracy and comprehensiveness of quality evaluations for educational
assessments, addressing some of the evaluation and question generation
challenges previously identified.

In Chapter 11, we compare the effectiveness of applying the IWF rubric and a
9-item SAQ rubric to questions from three distinct domains. The comparison
involves two forms of crowdsourcing, varied by expertise level, three popular
LLMs, SAQUET, and expert evaluation. We assess how these different methods
successfully apply the two rubrics for evaluating question quality. Our findings
indicate that the automated methods achieved near-perfect accuracy for certain
criteria, while human evaluations excelled in accuracy for others. These results
suggest that a hybrid approach, using automated methods to evaluate the more
reliable criteria and relying on human evaluators for the remaining ones, could be
a promising and scalable solution for improving question quality evaluation.

In Chapter 12, I introduce a new method for unsupervised skill generation
and association with educational MCQs, eliminating the need for additional data
such as contextual information or instructional text. In the domains of Chemistry
and E-Learning, I demonstrate that KC labels generated using an LLM-based
approach matched expert-generated ones approximately 50% of the time.
However, when evaluated by three domain experts in each subject area, the
LLM-generated KCs were significantly preferred over the expert-generated ones.
This suggests that the method may outperform traditional human-generated
mappings or, at the very least, provides a strong foundation for initial skill
mapping that can be further refined by experts.
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In Chapters 13 and 14, I discuss the nine key contributions of this thesis. I
detail the implications of this work and the future directions we can tackle from
here. Lastly, I present a conclusion that summarizes all of this work.

1.3 Summary of Contributions
This dissertation makes four significant contributions to the fields of
learnersourcing, crowdsourcing, educational assessment, and
technology-enhanced learning. First, it demonstrates through three
learnersourcing studies how students from various domains and higher
education institutions can generate high-quality questions with minimal
technological support, not requiring a specialized tool. It also provides an
analysis of student participation in these activities from an equity perspective,
emphasizing the necessity for more scalable and effective evaluation techniques.
Second, this work shows how varying levels of domain expertise and experience
can impact the evaluation of educational content. While rubrics can scaffold
some of these processes, advanced domain knowledge may be required in some
form. Third, the research introduces innovative approaches for developing
knowledge component tags for assessment items by leveraging crowdsourcing,
learnersourcing, and LLMs. These methods explore a scalable solution to
enhancing assessment items by generating and associating essential metadata.
Fourth, this work presents the first automated and scalable toolkit for the
evaluation of MCQs that accounts for the pedagogical implications of questions
and operates across various domains without necessitating advanced expertise.
This development promises to significantly enhance the quality and efficacy of
question evaluation processes in educational settings.
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Chapter 2: Background
This section commences with a literature review on crowdsourcing within
educational contexts, elucidating how collective intelligence can be harnessed to
develop and assess learning materials. Subsequently, I explore the nuanced
concept of learnersourcing, a derivative of crowdsourcing that specifically
leverages student engagement, for question generation purposes. The discourse
then shifts to identifying the attributes of an effective educational question,
examining both the knowledge components it measures and the cognitive
processes it stimulates. The following part introduces the Item-Writing Flaws
rubric, a prevalent tool for critiquing multiple-choice questions. Thereafter, the
discussion extends to an examination of methodologies for educational content
evaluation, contrasting human judgment with automated approaches. The
section culminates by examining the nascent integration of human-AI
collaboration in educational settings.

2.1 Crowdsourcing in Education
In educational settings, crowdsourcing has emerged as an innovative approach
to enhance question generation, refine content through feedback, furnish hints,
and categorize the foundational knowledge required for answering questions
accurately [1, 77, 106, 163]. However, a significant challenge persists: improving
the quality of contributions without sacrificing the broad-scale applicability
inherent to crowdsourcing [232]. Given that such tasks frequently demand
specific expertise, ranging from subject matter proficiency to pedagogical
understanding, crowdworkers may find themselves at a disadvantage [113].
Addressing this issue, research has shown that equipping crowdworkers with
expert-crafted examples and detailed rubrics not only bolsters the quality of their
work but also diminishes the time invested and mitigates the complexities
associated with insufficient expertise [64, 65]. An illustrative study revealed that
when crowdworkers without pedagogical training were given a rubric to evaluate
writing, their assessments aligned closely with those of seasoned educators [5].
Employing rubrics thus fulfills a dual function in crowdsourcing initiatives: it
prescribes uniform standards for evaluation and adeptly taps into the rich
tapestry of perspectives offered by a diverse crowd.

2.2 Learnersourcing
Learnersourcing involves students engaging in activities that produce content
which can be leveraged by future learners [110]. It has been used in many online
courses across a variety of domains, where students are typically tasked with
generating questions, making hints, or providing feedback [107]. Having students
generate short answer questions or MCQs that can then be used as practice
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opportunities in the current or future courses is a particular focus of much
learnersourcing research [227, 237]. An obvious challenge that arises from
optional activities is getting the students to participate with them and making a
meaningful contribution [37]. Previous research has demonstrated that
completing optional course activities is strongly related to a student’s
performance in a course [117]. As researchers and educators, we want students
to participate in learnersourcing activities, given that such activities can provide
useful learning data, contribute to the instructor’s assessment question banks,
and benefit student learning [4]. However, it is important to understand what
factors might influence students’s decision to participate in these optional
activities, as addressed in the study by [213]. To determine if such activities are
reaching all students in the course, or only those from the commonly represented
demographics or top-performing group, we need to investigate these factors as
they relate to students contributing to these learnersourcing tasks.

2.2.1 Student Engagement in Online Courses
Online courses offer students different affordances compared to traditional
in-person ones, which can be both beneficial and detrimental to learning
depending on the student. A study by [197] found that over 90% of the students
enrolled in online computer science courses participated at least once, but
overall participation rates ranged along a continuum from active to passive
participation. They found that student participation within these courses varied
by demographics, such as ethnicity and age. Particularly in STEM, evidence
suggests that online courses can perpetuate enrollment and participation gaps
for women or ethnicities that are traditionally underrepresented in these courses
[114].

Student engagement with an online course can be defined by their
participation in its learning activities [82]. Multiple studies have linked student
performance to their engagement with the course materials, indicating that
students who actively participate and do more activities have a higher chance to
pass the course and receive a higher grade [34]. While research supports the
benefits of having students participate in optional activities found in online
courses, other factors such as the demographics of the students may also
influence their participation and ultimately their success in the course [193]. For
instance, student motivation in STEM courses can be affected by stereotype
threat, causing a lack of a sense of belonging [23]. This lack of participation,
particularly when it involves learnersourcing, presents several challenges that
propagate throughout the course. When students have lower levels of
participation, they do fewer activities, which can pose difficulties in modeling
their learning [138]. Students doing fewer activities also leads to less data being
generated, which can hinder the efficacy of instructional interventions, such as
recommending practice problems [13].
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2.2.2 Question Generation
Previous work has utilized learnersourcing techniques to have students generate
short answer questions and MCQs [43, 237]. For the creation of short answer
questions, [43] found that the process is beneficial to student learning, as it
increases their engagement with the material and invokes critical thinking. For
the creation of MCQs, [237] found that a majority (86%) of the student- generated
questions met their quality threshold and identified several social features, such
as question ownership, that kept students motivated to make contributions. It is
not typical that learnersourced contributions achieve such a high quality, even
when the students are trained prior to making a contribution to the task [150]. In
addition to providing training, learnersourcing activities are commonly presented
via a separate tool or embedded within high-stakes assessments, to improve the
quality and increase the participation on the task [77, 99]. One such popular
system is PeerWise, which provides students with a custom learning
environment for collaboratively generating and sharing questions [58]. Previous
research has demonstrated that students authoring questions in the PeerWise
system has had positive effects on student learning and improved their
performance on exams [70, 149].

The success of such systems is likely a result of how the students’
generation of MCQs has been proven to positively impact their deep learning [57,
61, 70]. Another system, RiPPLE, also enables students to generate MCQs and
formulate distractors for them, which requires them to think deeply about
potential misconceptions [109]. The study involving RiPPLE found that students
using the system felt positive about their experience, which ultimately led to
measurable learning gains. An average of 1.6 questions per student were
authored during their use of the system over a five week period in their course.
Other learnersourcing approaches, such as Upgrade, take an offline approach,
that generates learning opportunities from prior student solutions to open-ended
problems [227]. They found that students achieved the same learning outcomes
in 30% less time using Upgrade-created questions instead of traditional
open-ended ones.

2.3 KCs and Cognitive Processes
When creating multiple-choice questions, it's important to incorporate several key
elements to enhance their educational value. In addition to providing feedback
and hints, which guide students towards understanding the correct answers, the
questions should be designed to clearly align with specific knowledge
components or competencies it is intended to assess. This alignment helps in
accurately measuring student proficiency in targeted areas and aids educators in
identifying gaps in knowledge or understanding. Additionally, the questions
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should cover a range of Bloom’s Revised Taxonomy levels. This ensures they
assess various cognitive skills from basic recall of facts to higher-order thinking
like analysis and evaluation.

2.3.1 Knowledge Components
A knowledge component is a specific piece of knowledge required to address a
particular problem within a digital learning environment [116]. These knowledge
components enable various learning analytics tools, such as learning curves,
open learner models, and adaptive learning systems [216]. Studies have shown
that digital learning environments utilizing adaptive systems powered by these
knowledge components, like cognitive tutors, allow students to achieve mastery
26% faster than traditional classroom instruction [118]. The effectiveness of
these systems depends on the precise definition and application of knowledge
component tags that accurately represent the knowledge needed to solve
specific problems.

In learning analytics, knowledge components are typically more detailed
than broader learning objectives or standards, which are typically linked to course
sections encompassing several skills [19]. For example, a learning objective in an
algebra course might be “Graph linear and quadratic functions and show
intercepts, maxima, and minima,” which covers multiple concepts. In contrast, a
knowledge component might be narrowly defined as “Identify the slope from an
equation in the form of y=mx+b,” focusing on a single problem within those
broader objectives. Knowledge components must be relevant to both the
problem and the course context, avoiding assessment of overly basic knowledge
such as the meaning of “+” and “=” in an algebra course.

Knowledge component tagging is traditionally performed by experts who
understand the necessary granularity and the subject matter [115]. Often, this
involves a cognitive task analysis (CTA) or think-aloud process, where an expert
articulates their thought processes during task performance, helping to identify
and record the knowledge components required [44]. While this method
produces an accurate knowledge component mapping and effective instructional
designs, it requires significant effort [128]. Moreover, it helps domain experts
avoid the "expert blind spot," a phenomenon where experts might overlook basic
steps that have become intuitive, potentially complicating the knowledge
component tagging process [171].

2.3.2 Automated KC Generation and Evaluation
The growing limitations of manual KCM construction, which relies exclusively on
human input, underscore the need for more effective approaches, as manual
methods often demand significant resources and time. Automated approaches
for generating KCMs have emerged as valuable tools that can enhance, rather
than replace, human efforts [20]. These methods employ data-driven approaches

24



with varied human intervention, like Learning Factors Analysis (LFA) and Q-matrix
inspection, to categorize questions under existing KCs within a predefined search
space in educational software [21, 38, 211]. Specifically, LFA relies on human
input to suggest factors that could explain task difficulty or the transfer of
learning between tasks. The results from these models require assigning human
readable labels after the fact, which has been found to be a pain point [134].

A KCM can be leveraged to predict student performance, the accuracy of
which can reflect how well the KCM represents the knowledge students gain
from different educational activities [139]. One such method, the Additive Factors
Model (AFM), is a logistic model that tracks students' knowledge growth by
observing changes in their performance across repeated practice with targeted
KCs [72]. The AFM builds on IRT models by incorporating an underlying KC model
and considering the learning that happens as students repeatedly apply each KC
[205].

Automated approaches for generating KCMs that operate largely without
human intervention typically follow two main strategies: generation or
classification [173]. In terms of generation, significant efforts focus on creating
knowledge graphs or extracting concepts from digital textbooks, in addition to
deriving KCs from student performance data [40], for example via matrix
factorization [24, 62] and VAE-based methods [176]. However, these methods
often face challenges related to interpretability, not only due to the opaque nature
of the algorithms used, but also because the generated labels may not hold
meaningful insights for educators [210]. On the classification front, the goal is to
assign existing KCs to problems based on semantic information contained in the
assessment text, a process that has proven effective in domains like Math and
Science [182, 224]. However, for areas without a well-defined standard or an
established bank of KCs, such as those outside the common core standards, this
classification approach presents a significant challenge due to the absence of
predefined labels for categorization [130]. Another related problem is
establishing the equivalence of individual KCs across different learning platforms
which often use varying nomenclature to refer to the same learning objectives.
Prior work explored the application of machine translation techniques that
consider assessment context and textual content to identify equivalent KC
pairings [131].

Notably, models developed or improved through automated or
semi-automated techniques frequently surpass their manually constructed
counterparts, especially in predicting student performance [7]. For example,
evidence from previous research shows that a KCM refined through a
combination of human judgment and automated methods can enable students to
achieve mastery 26% faster [118].
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2.3.3 Bloom’s Revised Taxonomy
It is beneficial for student learning if they encounter a variety of MCQs that target
higher-order cognitive processes according to Bloom's Revised Taxonomy [93].
This taxonomy consists of six hierarchical categories, each representing the
cognitive processes required to answer the question, ranging from recalling
information to creating new patterns or structures [119]. Previous research has
shown that MCQs commonly assess lower-level cognitive processes, such as
recall, but they can assess all levels [55]. Assigning a Bloom's Revised Taxonomy
label to each question can improve problem selection and learning analytics [49].
Automated methods for determining the cognitive level of questions have shown
promise, with accuracy as high as 84% compared to human labels [158].
However, these methods often require large amounts of training data or expert
time, making them inaccessible and difficult to scale.

2.4 Item-Writing Flaws
Developing MCQs that cover the appropriate concepts and target higher cognitive
levels can be challenging, even for expert instructors [68]. To assess the quality
of MCQs, different item response theory and statistical methods have commonly
been utilized [63, 105]. These methods often use collected student data, which
details if their choice was correct, which distractor(s) they selected, and how
many attempts they took to answer the question correctly. However, testing and
assessing MCQs in this manner poses a potential problem if the questions are
poorly constructed, as they can negatively impact students’ performance and
achievement [46]. To help prevent these negative effects, previous studies have
relied on qualitatively reviewing MCQs prior to testing them with students to
confirm their validity [12, 31, 222]. These studies often evaluate the questions
using a series of guidelines, such as the popular item-writing flaws (IWF)
guideline that provides a validated rubric consisting of 31 unique items for
assessing the quality of an MCQ [86].

Many studies have made use of the IWF guidelines, either by adopting the
original 31-item rubric or creating an abridged version for their own purpose, as
some of the items are not always applicable to the questions in a particular
domain [31, 196, 222]. These studies often include an evaluation of the cognitive
levels the MCQ assesses, which traditionally are recall and comprehension [207,
243]. One particular study assessed the quality of over two thousand instructor
generated MCQs by utilizing a 19-criteria version of the IWF guidelines [221].
They had several reviewers analyze the MCQs for IWFs and evaluate the cognitive
level the question assesses as either recall or application. Ultimately they found
that nearly half of the questions were deemed unacceptable due to containing
too many IWFs. The present study utilizes the same 19-IWF guidelines and
criteria for assessing MCQs at the recall or application cognitive level from [221].
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However, while previous work focuses on applying the guidelines to
instructor-generated questions, we apply them to student-generated ones.

2.5 Educational Content Evaluation
Previous research has identified flaws in MCQs across various domains and
teaching levels, including high-stakes standardized tests developed by
psychometricians and domain experts [221]. These MCQs often find repeated
use in test banks, practice sets, and training materials over the years.
Consequently, there is a need for ongoing quality evaluation of these pre-existing
questions, not just newly generated ones. This can complement analyses based
on student performance data, such as those offered by Item Response Theory
(IRT) [18]. However, evaluating MCQs before their implementation is crucial to
avoid exposing poorly designed questions to learners, which can impede their
learning [184]. Crafting high-quality questions remains a significant challenge,
and evaluating their quality poses an even greater one, demanding consistency,
scalability, and consideration of the questions' application contexts.

2.5.1 Automated Evaluation Methods
Over the past decade, automated MCQ quality evaluation has relied on metrics
such as BLEU, METEOR, and ROUGE [170]. These metrics primarily assess
similarity to a gold standard without considering educational value or
effectiveness in evaluating student knowledge [153]. While previous research
states these “standardized” metrics facilitate comparison across studies, they
involve numerous hyper-parameters that can vary by task and are often
insufficiently reported, complicating precise comparisons and replications [144].
Moreover, prior work has demonstrated that these metrics do not sufficiently
align with human evaluation [144, 228]. To align more closely with human
evaluation while maintaining scalability, alternative automated approaches have
explored metrics like perplexity, diversity, grammatical error, complexity, and
answerability [189, 230]. These have been applied to both machine- and human
generated questions, offering a broader evaluation that extends beyond mere
readability to include aspects critical for educational assessments.

When evaluating MCQs, perplexity assesses a language model's ability to
predict question and answer text based on its training data [35]. Lower scores
suggest more coherent questions and answers with predictable language
patterns, whereas higher scores indicate complexity or atypical text, suggesting
the questions could be unclear or poorly structured. Diversity evaluates the range
in vocabulary, structure, and content across generated texts, ensuring a variety of
questions and answers and reducing repetition [129]. A higher diversity score
indicates greater uniqueness among MCQs, avoiding repetitive phrases and
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templated patterns. Grammatical errors pinpoint grammar violations, such as
incorrect verb tense or spelling, quantified for each MCQ.

Complexity is typically assessed through cognitive complexity, using Bloom's
Revised Taxonomy to assign difficulty levels to MCQs based on the cognitive
skills required to answer them [122]. Bloom's Revised Taxonomy categorizes
cognitive skills ranging from recall (remembering) to higher-order skills
(creating), with questions demanding higher-order thinking deemed more
cognitively complex [74]. Answerability measures how accurately a question can
be answered, using the provided context or common knowledge. Recently, LLMs
such as GPT-4 have been used to automate this evaluation metric [189].
Specifically, the Prompting-based Metric on ANswerability (PMAN) strategy
employs three prompts to evaluate a question's quality by how well an LLM can
answer it, demonstrating that it aligns with human judgments [228].

2.5.2 Human Evaluation Methods
Despite the advancement of automated methods for evaluating multiple-choice
question (MCQ) quality, human evaluation remains the gold standard due to its
accuracy, although it is often subjective and based on intuitive metrics like
"difficulty" or "acceptability" [122, 125, 170]. These human assessments, involving
expert judgment of the questions against "best practice" conventions, are
challenging to standardize, replicate, and scale due to their time-intensive nature
[86]. Typically, experts or instructional designers use a standardized rubric to
assess both automatically generated and student-generated MCQs, helping to
decrease subjectivity and enhance the reproducibility of the evaluations [32, 122,
186].

To further assess the quality of student-generated questions, researchers
have used IRT techniques analyzing student performance data, which, if not
pre-evaluated for quality, might detrimentally affect student outcomes due to
potentially poor question construction [46, 122]. Alternatively, experts and peers
frequently review these questions using a detailed rubric that includes criteria like
language coherence, correctness, and perceived difficulty. However, past
evaluations have often overlooked deeper pedagogical aspects, such as how well
questions integrate into the course or assess previously unexamined content [22,
125].

2.6 Human-AI Partnerships
Partnerships for co-creating educational content typically follow four key phases:
creation, evaluation, utilization, and instructor/expert oversight [108]. By
integrating advances in large language models (LLMs), learnersourcing can be
enhanced with AI, providing students with nearly instant feedback on their
creations and improving the quality of their contributions [60]. These
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collaborations between students, instructors, and AI offer extensive opportunities
for both creating and evaluating content [212]. Advances in natural language
processing (NLP) and generative models enable AI to play a critical role in
co-creating content and in automating its quality evaluation. Learning analytics
can also support the evaluation by analyzing student performance on
AI-co-created assessments versus traditional ones. Existing research has
investigated the effectiveness and innovation of AI-generated learning resources
[202], utilizing NLP [161], trust-based networks [54], and deep learning [174] to
help evaluate both student- and AI-generated content. Although human input is
essential, there is a growing need to further leverage AI to support students and
instructors in developing educational content.
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Chapter 3
Students Generating High Quality

MCQs

3.1 Introduction
Multiple choice questions (MCQs) are a popular form of both formative and
summative assessment, widely used in higher education, and often accounting
for a considerable portion of a student’s course grade [63, 147]. MCQs are
advantageous because they are efficient to score, can be graded objectively,
enable item-analysis calculation upon student completion, and require less time
for students to respond [36, 83]. While MCQs traditionally assess students for
recall and comprehension, they can also probe for higher-level cognitive
processes such as the knowledge application and problem analysis [112, 149,
207]. In addition to evaluating student knowledge in both low-stakes and
high-stakes environments, MCQs offer a scalable and equitable means of
assessment [192]. The need for such scalability in assessment continues to
increase, as class sizes continue to grow and more educational materials shift to
being online [68]. With traditional authoring techniques for creating MCQs,
teachers will be challenged to keep up with increased demand for new and
quality assessments, making a more scalable solution desirable.

Instructors and teaching staff rarely have the time or incentive to develop
quality MCQs for formative assessment; instead their efforts are often focused
on creating high-stakes assessments such as quiz or exam questions [100, 172].
The continual creation and improvement of MCQs allows for a greater breadth of
topic coverage, helps to identify well constructed and valid assessments, and as
a result, enables improved learning analytics. However, creating MCQs presents
an issue of scalability, which recent efforts have tried to improve by enlisting
students in the process of MCQ generation, known as a form of learnersourcing,
to varying degrees of success [87, 237]. Learnersourcing is a form of
crowdsourcing in which students contribute novel content for future learners
while engaging in a meaningful learning experience themselves [227]. While
platforms like PeerWise [58], Quizzical [192], and RIPPLE [109] utilize
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learnersourcing by allowing students to author MCQs, they are not directly
integrated with the instructional content and accompanying activities, requiring
students to change between tools and invest ample time into the process of
authoring even a single question. Students and their data are being leveraged to
create assessments, but we need to better utilize them in this process, amplifying
their voice and viewpoints, without detracting from their learning or requiring an
excessive amount of their time. Previous work indicates that the process of
having students generate MCQs can benefit their learning [4]. By better
understanding how students participate and interact with generating MCQs, we
can work towards improving the process so that it benefits both the student’s
learning experience and the quality of the questions they create.

In order to discern how students engage in the MCQ generation process, we
sought a solution that does not require an additional tool or interrupt the context
of their instruction. In particular, we deployed a completely optional MCQ
generation activity in the context of seven instances of an online course.
Students working through the course, consisting of multiple pages of
instructional content and assessments, were presented with low-stakes activities
that were optional to complete as they worked throughout the course. We
investigated how this elicitation of having students generate an MCQ, given that
it was optional, presented directly among the course context, and surrounded by
the accompanying instructional text, would garner participation for the activity.
From the student contributions collected, we evaluated the quality of the MCQs,
determining if they were acceptable or contained certain item-writing flaws. The
student-generated MCQs were also assessed for their cognitive level, in
particular based on whether they targeted the typical recall level or if they
extended to the higher level of application and analysis [207, 240]. Finally, we
explored how different aspects of student interaction in the online course, such
as their performance on other low-stakes activities, correlate to the quality of the
MCQs they generated.

Through the investigation of these research questions, our work makes the
following contributions towards learnersourcing. First, our experimental results
suggest a set of student behaviors that influence their participation in an optional
learnersourcing task. Secondly, the study demonstrates that students can
provide recall- and application-level multiple choice questions, without training or
scaffolding. Third, we identified features of student performance in an online
course that are correlated to the quality of the multiple-choice questions they
generate.
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3.2 Methods
3.2.1 Study Context and Students
For this study, we used data collected from seven instances of the same
introductory chemistry course being taught at a community college on the west
coast of the United States. This course provides students with fundamental
knowledge of chemistry concepts, preparing them for future biology and
chemistry courses. There are no prerequisites for the course, outside of having
prior experience with intermediate algebra, which most of the students had from
high school. Additionally, the course is generally geared towards freshman and
sophomore undergraduate students from varying degree backgrounds, with a
majority of the students pursuing a chemistry-related degree, such as a
bachelor’s in biochemical engineering. The collected data we used comes from
the summer and fall semesters of 2020, when the introductory chemistry course
was offered in the OLI system. A single instance of the course was taught during
the summer semester and the remaining six instances were taught during the fall
2020 semester. A further breakdown of the course offerings, including the
anonymized instructor, semester, and number of students that accessed the
course materials can be found in Table 3.1.

Course Semester Instructor Student Count

chem 1a summer t1 47

chem 1b fall t1 55

chem 1c fall t1 27

chem 1d fall t2 23

chem 1e fall t3 2

chem 1f fall t3 23

chem 1g fall t4 24

Table 3.1: The seven introductory chemistry courses used in this study

Despite the offerings of the course having different instructors and even being
used across different semesters, the students were provided with the same set
of instructions regarding the use of the OLI materials. Students were provided
with access to the OLI content, which served as supplementary materials for
them alongside other course materials. They were not required to answer the
questions found throughout the OLI modules or even access them. Students
across all instances were granted access to the OLI content within the first two
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weeks of their respective course. They were also provided with an “Introduction
to OLI'' module, which provided an overview of how to effectively make use of the
system and the concepts that will be covered in the course. All the instructional
materials in OLI were optional to the students; there was no requirement for them
to access or complete the materials. However, students were assessed on the
concepts covered by the OLI materials, so it was beneficial for the students to
utilize them.

The OLI content the students used for this study covers the topic of atomic
theory and consists of six separate modules. Each module consists of several
topic headers, containing paragraphs of instructional text and low-stakes
activities embedded throughout. This particular section of the course consists of
two learning objectives, where each module of the OLI content targets one of the
two learning objectives. There are a total of 13 low-stakes and completely
optional activities embedded throughout the six modules of the course, not
including the activity used for this study. These activities include multiple choice
questions, selecting the correct option from a dropdown, drag-and-drop
exercises, and submitting a short answer to compare against an expert response.
Each of these activities is broken down into steps, depending on the components
of the activity, for a total of 37 unique steps. Every activity and their steps in the
course provide students with feedback after they have been answered.
Additionally, students have unlimited attempts to answer these questions, so
they can continue until they are correct or choose to advance, regardless of a
correct or incorrect response.

We focus on an activity we added to this course that involves the students
creating a multiple-choice question, shown in Figure 3.1. This activity is found on
the last module of the OLI content for this section of the course. This module
provides several paragraphs of text that summarizes the content found on the
five prior modules, along with this single activity. The activity is presented in the
same low-stakes and optional format as the other 13 activities found prior in the
course. It prompts students to create a multiple-choice question that targets
content from one of the five other modules found in the OLI content. The
students input the text for the question and then the correct answer, choice a,
along with three distractors, choices b, c and d. Finally, they are asked to specify
which specific concept(s) their question targets. We prompt them for the concept
to help them focus their question on a specific topic found in the OLI content,
rather than a broad and general chemistry question. Aside from that, no training
or scaffolding was provided to the students to help them generate a question. We
intentionally wanted to keep this low-stakes and optional, to examine the
students’ participation with the task and the quality of their contribution.
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Figure 3.1: The MCQ generation activity presented to students

3.2.2 Dataset
Student data was collected from their interactions with the 14 activities found in
the course, including the MCQ generation task. However, since the MCQ
generation task is our outcome, we focus our analysis on the 13 other activities
that the students completed in the course, which consisted of a total of 37
unique steps. On average, an activity in the course consists of 3 unique steps,
such as a single activity having the student select from three different dropdown
menus. All of the activities found in the OLI course were completely optional,
students could do as much or as little as they desired. For instance, sometimes a
student would begin working on an activity, but not complete all of the steps. As
a result, the system logs them having worked on that activity and also provides
the exact number of steps for that problem that they completed. For this data set
in particular, it is common for students to fully complete an activity if they start it,
i.e., they will do all of the steps.

The total time students spend on solving activities in the course is also
recorded by logging when the student first interacts with a step that is part of an
activity, such as by clicking on it, and ending when they have made a submission
for that step. This allows us to total the amount of time spent on the steps of an
activity and calculate the total time a student spent on a given activity, which we
can combine to get the total time spent on all activities in the course. In addition
to these metrics of student participation and time spent, we have three metrics
related to student performance on the activities. When a student works on a step
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for a given activity, OLI records if their first attempt at that step was correct or
not. A first attempt at a problem can be a strong indicator of a student’s current
understanding of the concepts being assessed [48]. Relatedly, the total number
of incorrect attempts made at a given step and the total number of correct
attempts is recorded. These numbers can potentially exceed the total step count,
as a student could correctly answer a question, then select an incorrect answer
to see the feedback, then select the correct response once again, registering two
correct and one incorrect for that step.

3.2.3 Calculating Question Quality
In order to assess the quality of the student-generated multiple-choice questions,
we utilized a series of guidelines for identifying item-writing flaws (IWFs) in
MCQs. The guidelines come from previous work that developed a taxonomy of
31 validated multiple-choice item-writing guidelines [86]. The exact rubric we
used for the study was a modified version that consists of 19 unique items and
has been used and validated in previous studies [31, 53, 181, 221, 222]. A full
description of the 19 items that make up the rubric can be found in Table 3.2. In
addition to the IWFs as a measure of question quality, we reviewed the cognitive
level of each student-generated MCQ. Two levels of cognition were identified,
recall or application, based upon a modified Bloom’s Revised Taxonomy that
MCQs have been evaluated under in previous studies [112, 151, 196, 199, 221]. A
recall question, denoted by K1, assesses only the recall of facts or basic levels of
comprehension. An application question, denoted by K2, assesses the higher
level of cognitive ability focusing on application and analysis of the learned
concepts.

Item-writing flaw Definition

Ambiguous or
unclear information

Questions and all options should be written in clear,
unambiguous language

Implausible
distracters

Make all distractors plausible as good items depend on
having effective distractors

Use of none of the
above

Avoid none of the above as it only really measures students
ability to detect incorrect answers

Longest option is
correct

Often the correct option is longer and includes more
detailed information, which clues students to this option

Gratuitous
information in stem

Avoid unnecessary information in the stem that is not
required to answer the question

True/false question The options should not be a series of true/false statements.
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Convergence cues Avoid convergence cues in options where there are different
combinations of multiple components to the answer

Logical cues in
stem

Avoid clues in the stem and the correct option that can help
the test-wise student to identify the correct option

Use of all of the
above

Avoid all of the above options as students can guess
correct responses based on partial information

Fill-in-blank Avoid omitting words in the middle of the stem that
students must insert from the options provided

Absolute terms
(never, always)

Avoid the use of absolute terms (e.g. never, always, all) in
the options as students are aware that they are almost
always false

Word repeats in
stem and correct
answer

Avoid similarly worded stems and correct responses or
words repeated in the stem and correct response

Unfocused stem The stem should present a clear and focused question that
can be understood and answered without looking at the
options

Complex or K-type Avoid questions that have a range of correct responses, that
ask students to select from a number of possible
combinations of the responses

Grammatical cues
in stem

All options should be grammatically consistent with the
stem and should be parallel in style and form

Lost sequence in
presentation of data

All options should be arranged in chronological or
numerical order

Vague terms
(sometimes,
frequently)

Avoid the use of vague terms (e.g. frequently, occasionally)
in the options as there is seldom agreement on their actual
meaning

More than one or no
correct answer

In single best-answer form, questions should have 1, and
only 1, best answer

Negative worded
stem (not, incorrect,
except)

Negatively worded stems are less likely to measure
important learning outcomes and can confuse students

Table 3.2: The rubric of 19 item-writing flaws used to evaluate the
student-generated multiple-choice questions

Table 3.3 contains two different student-generated MCQs; the top question
contains no IWFs and is at the application (K2) cognitive level. This question has
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zero IWFs according to the 19-item guideline, i.e. the question text is
appropriately worded and all answer choices are plausible. It is at the application
level of cognition as it requires the answerer to make a series of computations in
addition to recalling multiple chemical elements, their atomic mass units (amu),
and various counts of subatomic particles. In contrast, the bottom question
contains two IWFs and is at the recall (K1) cognitive level. The first flaw is the
logical cue in the stem, as it places an emphasis on the “neutral or uncharged”
part, signaling that the correct answer is “neutrons” which could be guessed
based on the similarity of the words alone. A second IWF occurs in the distractor
choice of option d, “atom”, which is implausible due to the question stating that
the particle is “in the atom”. Finally, this question is at the recall level of cognition
because it is asking for part of the description of a neutron, which can be
answered by simply recalling the definition of a neutron without any required
application or analysis.

Three item raters evaluated each student-generated MCQ, following the 19
IWF guidelines. All three of the raters had content-area expertise, ample
experience developing multiple-choice questions, and multiple prior training
sessions in writing high quality assessments.

An unknown atom was found, tests have concluded that it
weighed about 55 amu, and 29 neutrons were discovered. What
element is the atom?

a) Iron b) Copper

c) Cobalt d) Manganese

Which of these subatomic particles are neutral or uncharged in
the atom?

a) neutrons b) electrons
c) electrons d) atom

Table 3.3: A student-generated MCQ (top) that is K2 with 0 IWFs and another
(bottom) that is K1 with 2 IWFs

Using the IWF rubric, the raters went through each of the 57 student-generated
MCQs and applied the rubric to the question text and accompanying answer
choices for each student contribution. While reviewing for IWFs, the raters also
assigned a cognitive level of K1 or K2 to each question, based on if it required
recall (K1) or application (K2) in order to answer the question. Although
infrequent, three discordant questions were identified among the raters, related
to multiple IWFs found in a single question. These discordant MCQs were
discussed among the three raters until they reached a consensus on the
categorization of IWFs for the three questions. Upon completion of the
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evaluation, all 57 student-generated MCQs were labeled with the count, if any, of
IWFs they have and the cognitive level (K1 or K2) they assess.

3.2.4 Data Analysis
After the student-generated MCQs were evaluated for the IWFs and cognitive
level to determine their quality, we began to analyze how the student interactions
in the course correlated with both student participation on the task and the
quality of their contribution. First, we investigated the different patterns of
student participation in the course by looking at their interactions with the varying
low-stakes activities and their steps embedded throughout the course. We also
ran several unpaired t-tests to determine any significant differences between a
student's interactions with the OLI materials and their participation with the MCQ
generation task. Second, we use measures of central tendency to report the
varying IWFs and cognitive levels of the student-generated MCQs. We also
include a MannWhitney U-test for determining if there is a significant difference
for students that generated K2 questions instead of K1. Third, we use a series of
unpaired t tests to see which features of student behavior may lead to a higher
quality contribution. Note that across all of the research questions there was no
significant effect found based on the semester or instructor that the student had
for the course. Additionally, a Bonferroni correction was applied to post-hoc tests
used in the analyses that follow [15].

3.3 Results
3.3.1 Student Participation
Across all seven introductory chemistry courses used in this study, a total of 201
students accessed the OLI course. Among those 201 students, 57 of them
completed the optional MCQ generation task. The course consists of a total of 14
optional low-stakes activities, including the MCQ generation one, and on average
the students completed 9.75 of the 14 (69.94%) activities. Note that of the 201
students that accessed the course, 37 (18.41%) of the students did not interact
with any of the 14 low-stakes optional activities found throughout the course.

To determine which features of student interaction in the course were
indicative of their participation in the MCQ generation activity, we performed a
series of t-tests on their behavior with the other activities found in the course.
This revealed a significant difference between the student participation with the
other low-stakes activities in the course and their participation in the MCQ
generation task. An unpaired t-test showed there was a strong significant
difference in the number of activity steps completed by students that did the
MCQ generation tasks (M = 45.24, SD = 4.22) and those that did not do the task
(M = 24.39, SD = 19.49), t(199) = 7.917, p < .0001. As expected, students that
often completed all of the steps present in the activities embedded throughout
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the course were also more likely to also do the MCQ generation task. Similar
significant results were observed for the number of activities done by a student
and their participation for the MCQ generation task, t(199) = 7.087, p < .0001.
This result supports the previous one, as the activities found throughout the
course are composed of multiple steps and a subset of students completed all
the 14 activities.

Due to student participation with all the activities and their steps being an
indicator of their participation for the MCQ generation task, we also looked at the
total time spent by the students on activities. On average, students spent roughly
18.5 (SD = 22.89) minutes working on the low-stakes activities found throughout
the course. This was the time they spent interacting and answering the activities,
which does not include the time they spent reading the instructional text and
content. Students that did the MCQ generation task spent M1= 32.29 (SD1 =
27.17) minutes working on other activities in the course while students that did
not do the task spent an average of M2 = 13.03 (SD2 = 18.47) minutes. There was
a significant difference in the amount of time spent on activities between
students who participated in the MCQ generation task and those who did not,
t(199) = 5.787, p < .0001. This means students that answered most or all of the
activities, thus spending more time on them, also participated more in the MCQ
generation task.

3.3.2 Question Quality
To assess the quality of student-generated MCQs, we evaluated all 57 of their
contributions using the 19 item-writing flaws rubric. This evaluation revealed a
majority of the MCQs were of acceptable quality, with 22 (38.60%) containing no
IWFs and 16 (28.07%) of the questions containing just one IWF. Table 3.4 shows
the further breakdown of IWFs for all 57 MCQs that were evaluated, with roughly
33% of the questions containing more than one flaw. None of the contributions
had more than four IWFs, and MCQs with one or fewer IWFs can be considered
acceptable for use as a low-stakes assessment [221]. A total of 60 violations
from 15 of the 19 IWFs were identified across the student-generated MCQs.
While we utilized a 19-item rubric for the evaluation, only 15 of the criteria were
present in the questions, as shown in Table 3.5. The four items that were not
applicable to any of the MCQs were: negative word stem (not, incorrect, expect),
more than one or no correct answer, vague terms (sometimes, frequently), and
lost sequence in presentation of data.

Number of flaws n (%) N = 57

None 22 (38.60%)

One 16 (28.07%)
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Two 15 (26.31%)

Three 2 (3.51%)

Four 2 (3.51%)

Table 3.4: Total number of item-writing flaws encountered in the reviewed
student-generated multiple choice questions

Item-writing flaw n (%) N = 57

Ambiguous or unclear information 13 (21.67)

Implausible distracters 12 (20.00)

Use of none of the above 8 (13.33)

Longest option is correct 6 (10.00)

Gratuitous information in stem 3 (5.00)

True/false question 3 (5.00)

Convergence cues

Logical cues in stem

Use of all of the above

3 (5.00)

2 (3.33)

2 (3.33)

Fill-in-blank 2 (3.33)

Absolute terms (never, always) 2 (3.33)

Word repeats in stem and correct answer 1 (1.67)

Unfocused stem 1 (1.67)

Complex or K-type 1 (1.67)

Grammatical cues in sentence completion 1 (1.67)

Table 3.5: Frequency of item-writing flaws identified in the student-generated
multiple choice questions

In addition to evaluating the MCQs based on the 19 item writing guidelines, we
assessed the cognitive level of the 57 student-generated MCQs to further
determine their quality. A vast majority of the questions (n = 49, 85.96%) were
written at the K1 level, indicating that they focused on recall and comprehension.
Interestingly, as shown in Table 3.6, the eight questions written at the K2 level of
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application and analysis had one or fewer errors. Although at a much smaller
sample size, there was a significantly higher chance that a K2 question would
have zero or one IWFs compared to a K1 question, as indicated by a
Mann-Whitney U-test, U = 297, z = 2.308, p = 0.014.

Item-writing Flaws (%) K1 - Recall &
Comprehension

K2 - Application
& Analysis

None 16 (28.07) 6 (10.53)
One 14 (24.57) 2 (3.51)
Two 15 (26.32) 0
Three 2 (3.51) 0
Four 2 (3.51) 0

Table 3.6: Cognitive level assessed by the student-generated question and the
number of item-writing flaws it has

To determine which of the 57 student-generated MCQs were of acceptable
quality, we grouped them into two categories based on their number of
item-writing flaws. In total 19 (33.33%) of the questions were evaluated as being
not acceptable, due to having two or more IWFs. The remaining 38 (66.67%)
questions had either zero or one IWFs and were deemed to be acceptable for
use. Table 3.7 presents an example of two student MCQs evaluated as
acceptable, as they both have 0 IWFs and could be utilized as formative
assessments in the course. Table 3.8 shows two student MCQs evaluated as
unacceptable. In particular, the question on the top has unclear wording in the
question’s text, “number represent of the element”, and has “none of the above”
as an answer choice. The question on the bottom of Table 3.8 contains
implausible distractors (i.e. Aristotle, who is never mentioned in the course) and
has the longest and most detailed option as the correct answer.

An atom has an atomic number of 5 and a mass number of
11. How many neutrons are in this atom?

a) 5 b) 6

c) 16 d) 11

Which scientist discovered that protons are centered in the
nucleus of an atom?

a) Rutherfod b) Thomson
c) Chadwick d) Milikan
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Table 3.7: Two student generated MCQs evaluated by experts as being
acceptable for use

What does the atomic number represent of the element?

a) proton b) neutron

c) electron d) none of the above

Which physicist discovered the Cathode Ray Experiment?

a) JJ. Thompson b) Milikan
c) Aristotle d) Leucippus

Table 3.8: Two student generated MCQs evaluated by experts as being
unacceptable due to their Item-Writing Flaws

3.3.3 Student Interaction and Question Quality
We investigated if particular student interactions with the other low-stakes
activities in the course correlated with the quality of their contribution, in order to
see how we might predict or promote better questions from the students. While
there was a significant difference found between student participation in the
MCQ generation task and participation in the other low-stakes activities
throughout the course, it was not found to correlate with the quality of the
student contribution in this study (t(199) = 4.891, p = 0.417). However, student
performance on the activities had a significant effect on the quality, measured in
IWFs, of their MCQ contribution t(55) = 2.973, p < .005, as students who made
more incorrect answers were more likely to contribute questions evaluated as
unacceptable. There was a significant difference between students answering an
activity correctly on the first try and the quality of their contribution, t(55) = 2.300,
p < .05.

The previous findings relate to the student potentially having a better
understanding of the material, thus making fewer mistakes and answering the
questions correctly. This better understanding might in turn help the student to
provide a higher quality question. In addition to student knowledge, we
investigated if more time spent on the MCQ generation task led to a potentially
higher quality contribution. However, the total amount of time a student spent on
MCQ generation task (Mseconds = 153) and the quality of the contribution was
found to not be statistically significant, t(55) = 0.4769, p = 0.6353).

3.4 Discussion
In this research, we investigated the effects of student participation and
performance on their contribution to a MCQ generation task. We found that the
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students who chose to participate in the task generally completed all of the other
optional activities found in the course. Even with the task being optional and only
providing brief instructions with no scaffolding, students were able to generate
MCQs that could be utilized as formative assessments for the course without any
modifications. In exploring what features of student interaction in the course
impacted the quality of the MCQ they generated, we found that their performance
on the other low-stakes activities was significantly correlated with it. These
findings suggest that students can create high quality multiple-choice questions
from an optional and low-stakes activity within an online learning environment.

With all the low-stakes activities embedded throughout the course being
completely optional, including the MCQ generation one, there was still a high
amount of overall participation from the students. This was particularly
surprising for a learnersourcing activity, which generally has lower participation
rates due to the lesser perceived value students see in completion of the activity
[77]. While past MCQ generation methods have relied on external systems [58,
109, 192, 233] or embedding the task in a high-stakes required assessment such
as an exam [92], our study presented the task as a low-stakes activity, seemingly
fitting in among the MCQ and drag-and-drop activities found on the other
modules of course content. Leveraging just the native features of the system, in
this case textboxes for short answer questions, we were able to provide students
with the MCQ generation task seamlessly and without requiring them to utilize
yet another platform. It is likely participation would be even greater if the task
was required by students or embedded into a high-stakes assessment, such as a
quiz question. However, this approach would introduce another series of
potential complications, such as requiring it to be graded and potentially
introducing an abundance of unacceptable questions contributed by students
that do not wish to do the activity, but are forced to in the context.

Intuitively, student participation in terms of their interaction with the other
low-stakes activities found in the course was strongly associated with their
participation in the MCQ generation task. Since the course was relatively small,
consisting of just 6 modules and 14 activities, it was common for the students to
either complete all of the activities or choose to ignore them altogether. While we
could not accurately calculate the exact time a student spent in the course, due
to them potentially leaving the resources up while they are doing other work on
the computer, estimates based on their access time and the time they spent on
activities suggest the material took the students about two to three hours.
Almost 20% of the students that accessed the course materials did not complete
any of the activities in the course. One reason this might be the case is that they
already had prior knowledge of the materials for this particular section of
content, so they did not feel the need to do them. If this was the case, then we
would want to also include those students in the MCQ generation task in order to
take advantage of their existing knowledge. Encouraging all students to
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participate in this activity, such as through including a motivational prompt about
how it can benefit their learning, could potentially better engage a student that
might otherwise skip it.

Evaluation of the 57 student-generated MCQs identified that a majority of
them had zero or one IWFs, with a very few number of questions having more
than two IWFs. This came as a surprise considering that we tried to keep the
activity brief and accessible with a concise instructional prompt for the task, no
prior training being offered, and a lack of scaffolding being provided to the
students as they worked through the task. It is possible that prior to the course,
some students had experience writing MCQs or that they were particularly
thoughtful and engaged with the activity since it was asking something
non-traditional of them. However, this study demonstrates that even without
training the students, providing them with overly detailed instructions, or even
giving them MCQ writing guidelines, they can still contribute acceptable
questions. However, the quality of the generated MCQ may be further improved
by providing these resources to the students, but there are potential tradeoffs to
consider between the brevity of the activity and the student participation
garnered.

While the cognitive levels of the questions were mostly at the K1 level of
recall and comprehension, this is typical of MCQs due to the nature of the
assessment and is in line with findings from previous work [31, 221, 240].
Additionally, several student-generated MCQs did reach the K2 level of
application and analysis and had significantly lower IWFs at this cognitive level.
Further investigation remains on how we can better assist students in generating
MCQs that target this K2 level, but MCQs at the K1 level are still usable for both
formative and summative assessments.

A majority of the IWFs encountered in the student-generated MCQs
presented themselves in the form of ambiguous or unclear information, which
relates to the question stem being unclear. This flaw could be alleviated by
providing the students with guidelines for question writing or reminding them to
read over question text for clarity before submitting it. The second and third most
occurring IWFs both relate to the answer choices of the question, as distractors
are notoriously difficult to construct for MCQ generation [123]. Introducing a form
of scaffolding to the activity which prompts students to think about the
distractors they create or what constitutes an acceptable distractor, could
potentially help students overcome these two common flaws. Ultimately these
three most common IWFs that were identified in the contributions are not
surprising, as they match findings from previous studies that reviewed MCQs
generated by instructors [53, 222]. Interestingly, these studies suggest that no
matter the expertise level, instructor or student, generating a quality MCQ free of
flaws may still pose a challenge.
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Grouping the student-generated MCQs by their potential IWFs resulted in
roughly 33% of the questions being evaluated as unacceptable in their current
state. Based on the expert evaluation, only a few of the questions were beyond
repair. A majority of the questions that contained multiple IWFs could be resolved
with a few minor edits. The question’s central idea and what it is trying to assess
was typically conveyed even with IWFs present, which allows for the question to
potentially be leveraged later by another person to make corrections to it, akin to
previous work for learnersourcing MCQs [109]. The other 67% of the questions
were evaluated as being acceptable for use and could be directly utilized as
formative assessments for the course in their existing state. Although these were
acceptable, the cognitive level they assess could be enhanced from the K1 level,
however, for a quick and low-cost way to assess student knowledge, they suffice.

There was no significant correlation between student participation in the
low-stakes activities with the quality of the MCQ a student contributed. We
expected that increased participation with the other activities would correlate
with an improved quality of question, but there may have been a ceiling effect,
since a majority of the students that did the MCQ generation task did most, if not
all, of the other lowstakes activities. Features relating to student performance on
the low-stakes activities embedded throughout the course, such as their first
attempt correct or the number of incorrect answers they gave, were both
significantly related to the quality of the student question. This finding is
relatively intuitive in that students who make fewer mistakes overall and get the
problem correct on the first attempt may demonstrate a higher level of mastery
and thus can create higher quality questions using that knowledge. However,
students who do not demonstrate mastery and are more novice bring about a
unique perspective in the MCQ generation process and therefore they should not
be overlooked. One way to effectively leverage this could be to have higher
performing students generate the questions and then other students verify or
improve it, akin to previous learnersourcing work [150]. For instance, potential
student misconceptions may arise in the question text or answers they generate,
which of itself are valuable insights into the student learning process that could
potentially be leveraged as the source material for a question.

In our study, students chose to participate in a learnersourcing task with
minimal instructions where they generate a MCQ, even when it is presented as
just another low-stakes optional activity. A new system or excessive information
does not necessarily need to be introduced to the students to have a successfully
generated MCQ. Keeping it native and simple worked surprisingly well in this
study, compared to the participation rates detailed in previous learnersourcing
studies [123, 227]. A majority of the student contributed MCQs could be utilized
in their current state as formative assessments in the course, since they
contained zero or just a single IWF that was not a cause for rejection. Even the
contributed questions that contained multiple flaws could potentially be
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remedied with just a few edits to the question wording, although domain
knowledge is often required for modifications to the distractors. While a majority
of the questions assessed knowledge at the K1 level, that is a typical level for
MCQs and sufficient for the amount of time and lack of training the students had
[207, 240]. Providing question writing guidelines for students could potentially
help them construct MCQs at a more advanced cognitive level.

3.5 Limitations & Future Work
There are several limitations in this study. First, our study relies on student data
from optional activities found throughout the course. Our findings are prone to a
self selection bias, as participants in the MCQ generation task might be the most
driven students that want to complete all of the materials. Second, the students
in this study were all enrolled in a summer or fall offering of the same
introductory chemistry course, taught by one of four instructors. Thus, our results
may not generalize as well to other domains with students that are pursuing
different degrees and coursework. Finally, our sample size could be increased to
gain more statistical significance and insight into the cognitive level of the MCQs
generated by students. With only 8 of the 57 student-generated questions
targeting the K2 level of application and analysis, increasing the sample size
could yield a more accurate measure of ratio. However, our current sample size is
large enough to detect statistical significance.

In this work, our analysis is limited to the students’ performance within the
context of the unit in the OLI system. Ideally, we would like to include other
summative measures of the student and their learning, such as their grade in the
course or GPA. We urge future research to investigate how we can incorporate
learnersourcing tasks, such as MCQ generation, through more low-stakes and
natural mechanisms. While having students complete such tasks as part of a
quiz or homework assignment may yield greater participation, it may not be the
best use of required student time, especially if it requires them to become
familiar with an entirely new system. Investigating the learning differences
between students completing such a task in a low-stakes vs. high-stakes
environment may yield interesting results for future tasks. In this study, we
intentionally had the task be low-stakes and use minimal instruction. We plan to
investigate the trade-off between instructional brevity and student participation in
learnersourcing activities in the future.

Additionally, while these results might suggest higher performing students
generate higher quality questions, we should not overlook the other students.
Every student has a valid viewpoint they can bring into the MCQ generation
process, not just the top performing ones. For instance, leveraging the full range
of students can yield questions that target misconceptions that might otherwise
be overlooked. Future work may look to analyze whether MCQs generated by
lower performing students reflect potential misconceptions they hold, as a way to
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both identify and remedy potential knowledge gaps. Finally, towards building up a
practical question bank for instructors, we will look into diversifying the topics of
generated questions, such as placing the activity at different points throughout
the course.

3.6 Conclusion
This work demonstrates that students’ participation and performance with
activities in an online chemistry course correlates with their contribution to a
MCQ generation task. Our results highlight how student behaviors regarding their
completion of the low-stakes activities in the course are indicative of their
participation on an optional learnersourcing task. Requiring the student to do the
activity, such as putting it in a high-stakes assessment, having students use
another system, or utilizing another tool to generate the MCQ, is not necessarily
required for contributions that are evaluated as quality questions. Students are
capable of providing recall and comprehension level MCQs, without detailed
instructions, prior training, or scaffolding. While a majority of the MCQs students
generated were acceptable and could be used as is, there is an influence of
student performance, in terms of making fewer incorrect answers and getting
questions correct on the first attempt, on an improved quality question. This
research helps demonstrate one way to help scale online learning and improve
educational resources, by leveraging the students in a course. Not only can these
created questions aid the instructor and other students, but the process of
students generating these questions has been shown to benefit their learning.
This work opens up further opportunities for both engaging students in the
process of generating MCQs and promoting their behavior that leads to a higher
quality contribution for future learnersourcing tasks.
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Chapter 4
Students Generating High Quality SAQs

4.1 Introduction
Students generating short answer questions has been proven to support their
learning of new instructional content [22, 43]. As students generate questions,
they deeply engage with the subject matter and utilize critical thinking skills [57].
This process leverages student engagement in ways that provide meaningful
data around student interaction integrated with new student-generated learning
assets that can support future learners [61]. This is known as a form of
learnersourcing, where students complete activities that produce content which
can then be leveraged by future learners [110]. Several systems to support
students in the generation and sharing of questions have been leveraged by
thousands of students [58, 109]. This usage has led to the student-authoring of
nearly a million questions, while also supporting research demonstrating that
student question generation can lead to positive learning outcomes [107].

On the other hand, the quality of student-generated questions can widely
vary [162]. While existing learnersourcing tools can scaffold this process and
guide students towards generating better questions, they often require external
systems [58, 109]. Additionally, evaluating the multitude of student-generated
questions presents another challenge, with past research relying on experts,
other students, or automated methods [140]. Automated methods often rely on
the surface-level features of the question, such as the readability of text length,
without including the pedagogical value it adds to a course. Recent research has
developed and utilized a rubric for human evaluation of automatically generated
questions that includes both linguistic and pedagogical criteria [91, 217].
However, these criteria have not seen wide adoption in automated evaluation
methods, largely due to the difficulties associated with encoding them in a
machine-interpretable way.

In this work, we explored how students could contribute short answer
questions with minimal scaffolding and how we could assess their quality using
machine learning models that match expert evaluations. We deployed a short
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answer question generation activity into seven instances of an online
college-level chemistry course. From the student responses, we evaluated the
quality of the short answer questions, determining if they were of sufficient
quality, with respect to their pedagogical value, to be used in the course. The
student-generated questions were also assessed for their cognitive level, in
terms of Bloom’s Revised Taxonomy [119]. Following this, we explored
automatically evaluating the questions for their quality and cognitive level using a
state-of-the-art language model.

Our work makes the following contributions towards learnersourcing and
question evaluation. First, we demonstrate that students can create high-quality
questions with a simple prompt that can be added to virtually any learning
platform. Second, we present an expert evaluation process investigating the
quality and cognitive level of student generated questions. Third, we evaluate the
usefulness of using a state-of-the-art language model in classifying educational
questions, in an effort to make this process scalable and potentially saving
instructor time. Ultimately, our work demonstrates how students can generate
high quality questions with minimal scaffolding and how language models might
be leveraged to assist in the quality and pedagogical evaluation of short answer
questions.

4.2 Learning Platform and Data Collection
The present study takes place in a digital courseware platform known as the
Open Learning Initiative (OLI). OLI is an open-ended learning environment that
offers courses from a variety of domains and consists of interactive activities
and diverse multimedia content [27]. OLI consists of instructional content and
low-stakes, also known as formative, activities. These activities consist of a
variety of question types such as multiple-choice questions, short answer, and
dropdown style questions. Students work through different modules in the
system, akin to chapters in a textbook, where they are presented with
instructional text and videos. Low-stakes activities are embedded throughout
these instructional materials, providing the students with feedback and practice
opportunities to assess the concepts they are learning.

The data used in this study was collected from a week-long module in seven
instances of an introductory chemistry course taught at a community college in
the western U.S. The course consists of first- and second-year undergraduates
from varying degree backgrounds, with most of the students pursuing a
chemistry-related degree. The data comes from the fall semester of 2021, when
the introductory chemistry course was offered in the OLI system. In total, the
data consists of 143 students and their contribution to the short answer
generation activity. The OLI content the students used during the week when our
data was collected covers the topics of pH, buffers, and amino acids. There are a
total of 38 low-stakes activities embedded throughout the pages of this module.
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Every activity provides the students with detailed instructional feedback, for both
incorrect and correct responses.

We focus on an activity that was added to the course that involves each
student generating a short answer question. In the chemistry course, this activity
is found on a page containing four paragraphs of instructional text, three worked
examples, and eight multiple-choice questions. This activity is presented in the
same low-stake format as the other activities found throughout the course, as
students do not receive a grade for their participation or the quality of their
response in the activity. It prompts students to generate a short answer question,
by asking them to “Create a short answer question that can be correctly answered
based on the content covered in this module”. In the activity, students are first
prompted to write the question text in the provided text box on the top part of the
activity and then write the answer to the question in the bottom text box. The
instructions for the self-explanation are intentionally brief and similar prompts
have been used in related studies by [4, 239].

4.3 Data Analysis
4.3.1 Human Evaluation
The 143 student-generated short answer questions were evaluated by two
experts to assess their quality and Bloom’s Revised Taxonomy level. The two
experts had content knowledge in chemistry, multiple years of teaching
experience, familiarity with the OLI course, and ample previous experience coding
qualitative student data. To first evaluate the quality of the questions, the two
experts used a 9-item rubric that has been used in previous studies for assessing
the linguistic and pedagogical quality of questions [91, 217]. This rubric contains
9 hierarchical criteria, shown in Table 4.1. These criteria are asked to the two
experts in the order, from top to bottom, that they are presented in the table. Eight
of the rubric criteria involve binary (yes/no) responses. The only non-binary item
is information needed, which consists of three unique options, where each
corresponds to the location of the information the students need to know in order
to successfully answer the question.

The rubric items are hierarchical by nature, meaning that if certain criteria
are answered as “no”, then the remaining items will be marked as “not
applicable”. These criteria are bolded in Table 4.1. For example, if the experts
answer “no” to the answerable rubric item, then the three items that follow will be
marked as “not applicable”. This contributes to avoiding distortion of the rubric
criteria distributions for questions that are not ratable across certain items and
helps to save the expert evaluators’ time. The inter-rater reliability (IRR) values
between the two evaluators for each rubric item are also reported in Table 4.1. It
includes the percentage agreement and Cohen’s Kappa κ statistic [148] as a
measure of IRR for all rubric items. These items are at either a near perfect or
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substantial level of agreement between the two raters. Two of them, domain
related and central, had perfect agreement, as all of the student-generated
questions pertained to chemistry content covered in the current OLI module.

Rubric Item Definition
Understandable
(97.20%, κ = 0.83) Could you understand what the question is asking?

DomainRelated
(100%, κ = 1.0) Is the question related to the Chemistry domain?

Grammatical
(96.15%, κ = 0.82)

Is the question grammatically well formed, i.e. is it free of
language errors?

Clear
(98.46%, κ = 0.83) Is it clear what the question asks for?

NotRephrasing
(89.52%, κ = 0.66)

Does the question assess course content that has not
been assessed by an existing question in the course?

Answerable
(99.19%, κ = 0.88) Are students probably able to answer the question?

InformationNeeded
(88.14%, κ = 0.73)

(op) Information presented directly and in one place only
in the text
(dp) Information presented in different parts of the text
(te) A combination of information from the text with
external knowledge

Central
(100%, κ = 1.00)

Do you think being able to answer the question is
important to work on the topics covered by the current
module?

WouldYouUseIt
(82.35%, κ = 0.62)

If you were a teacher working with the OLI module in your
class, would you include this question in the course?

Table 4.1: The hierarchical 9-item rubric used to evaluate the questions, the
bolded criteria stop the review process if answered as “no”. The bracketed

numbers indicate agreement percentage between raters and Cohen’s κ value for
each item

If the expert evaluators answer “yes” to all the binary rubric items and answer any
of the three options for information needed then we consider that to be a high
quality question. In line with previous research, meeting all the rubric criteria
suggests that the question is both linguistically and pedagogically sound [91,
217]. Additionally, the last rubric criteria would you use it asks the evaluators if
they would use the student-generated question if they were teaching the course
and using the OLI materials. As the evaluators are familiar with the OLI content
and have prior teaching experience, they can judge the pedagogical quality of the
student-generated questions. However, we acknowledge that despite the two
expert evaluators’ backgrounds and high IRR they can still interpret the
student-generated questions in different ways as influenced by their prior
knowledge and linguistic preferences [11].
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In order to assess the cognitive level of the student-generated questions, the
two expert evaluators utilized Bloom’s Revised Taxonomy [119]. This taxonomy,
shown in Table 4.2, has been applied to educational questions in prior research
[93, 242]. It consists of six different levels, where each one corresponds to the
cognitive processes involved in answering the question. Using these six
taxonomy levels, the two expert evaluators classified each student-generated
question to a level, depending on what cognitive process is required to answer it.
Note, only student-generated questions that had no “non applicable” answers to
the nine rubric criteria were evaluated in this way, resulting in a total of 120 of the
143 (84%) questions being assigned one of the six levels as agreed upon by the
two expert evaluators. While there are six levels to the taxonomy, the student
generated questions in this study were all assigned to the first four levels, as
none of the questions targeted the cognitive processes of evaluate or create. The
omission of these two levels was not by design, however they are less common
for short answer questions typically found in courses, which are more likely to
assess the first four levels of Bloom’s Revised Taxonomy [209]. Additionally, while
assessing the questions using the 9-item rubric and for Bloom’s Revised
Taxonomy, the two expert evaluators had disagreements, as indicated by the
Kappa values in Table 4.1. The discordant criteria for such questions were
discussed between the two raters, resulting in them reaching a consensus on the
categorization of the question.

Bloom’s Level Definition
Remember Retrieve relevant knowledge from long-term memory

Understand Construct meaning from instructional messages, including
oral, written and graphic communication

Apply Carry out or using a procedure in a given situation

Analyze
Break down the learning material into constituent parts and
determine how parts relate to one another and to an overall
structure

Evaluate Make judgments based on criteria and standards

Create Put elements together to form a coherent whole or to
reorganize into a new pattern or structure

Table 4.2: Six levels of Bloom’s Revised Taxonomy [119] in ascending cognitive
order from lowest to highest, along with their operational definitions

The IRR between the two expert evaluators for applying Bloom’s Revised
Taxonomy to the student-generated questions was assessed via percentage of
agreement (81.67%) and Cohen’s Kappa (κ=.74), suggesting a substantial level of
agreement. This agreement level is akin to previous studies that applied Bloom’s
Revised Taxonomy to student generated questions [238]. In accordance with
previous research [119, 235], we define a student-generated question as
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assessing a low cognitive level if it was evaluated to be at the remember or
understand levels. Conversely the question is said to assess at a high cognitive
level if it was evaluated to be at the apply, analyze, evaluate, or create levels.
Typically, multiple-choice and short answer questions rely on the cognitive
processes associated with lower cognitive levels, although both question types
can assess higher levels [229]. It is desirable to have questions assessed at a
higher level, as it is more beneficial for student learning [119].

4.3.2 Human Evaluation
Our second evaluation method utilizes GPT-3, a language model with up to 175
billion parameters trained on a large dataset of text scraped from the internet
[33]. We selected this language model for our evaluation due to it being
state-of-the-art for multiple natural language processing tasks and being the
largest publicly available transformer language model. It is a high-performing and
popular language model choice for text classification, with recent applications in
classifying emails [223] and determining if news articles were real or fake [39]. In
this work, we used GPT-3 to perform classification on the student generated
questions in two different ways. We avoided using typical automated question
generation evaluation criteria such as BLEU or METEOR, as they have been
proven to not correlate with human evaluation and do not have pedagogical
implications [206].

First, we used it for binary classification to see if it could classify the student
generated questions as being low or high quality, matching the evaluation of the
two experts. To make this classification, we first fine-tuned a GPT-3 Ada model
on the LearningQ dataset [41], which is publicly available and contains 5,600
student-generated short answer questions from Khan Academy. Each question in
this dataset was evaluated by two expert instructors and assigned a label
corresponding to if it was useful for learning or not. The researchers for the
LearningQ dataset defined a question as being useful for learning akin to several
of the rubric criteria we utilized in this study. They based their evaluation on the
following three criteria: (i) concept-relevant, seeking information on the concepts
taught in the course; (ii) context-complete, providing enough information to be
answerable by other students; and (iii) not-generic, meaning the question asks
about a course concept not on another topic or of another style, such as asking
for learning advice. Additionally, the questions in the LearningQ dataset came
from a variety of domains, which included STEM courses and a single humanity
one. No preprocessing was performed on the questions used to fine–tune the
model; they were used as-is from the publicly available dataset along with their
corresponding binary labels. Fine-tuning the model with default hyperparameters
suggested by the documentation1 took approximately 10 min and incurred a cost

1 We used the default hyperparameters as suggested in https://beta.openai.com/docs/guides/fine-tuning
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of $0.21. Upon completion, we passed in the student-generated questions as the
GPT-3 model’s input, obtaining the output as a binary label indicating if it rated
each question as useful for learning (high quality) or not (low quality).

Secondly, we used another instance of the GPT-3 Ada model to perform
multiclass classification using Bloom’s Revised Taxonomy levels. We once again
use GPT-3 Ada, which was selected due to its low cost and effectiveness at
classification tasks that are less nuanced, with comparable performance to the
Davinci model. We wanted to determine if GPT-3, fine-tuned on example
questions from each level, could perform similarly to the two expert evaluators.
To fine-tune the model, we utilized a dataset consisting of 100 questions mapped
to each of six Bloom’s Revised Taxonomy levels, for a total of 600 questions
[235]. These 600 questions were assigned to a level of Bloom’s Revised
Taxonomy by a pedagogical expert and this dataset has been used in ample
previous studies involving fine-tuning and classification tasks. In the present
student, the expert evaluation of the student-generated questions only identified
four of the six Bloom’s levels that were applicable to the questions. However, we
included questions from the two unused Bloom’s levels in the fine-tuning process,
because if the model was accurate, we could utilize it for future datasets that
may contain questions at that cognitive level. For this dataset, we performed no
preprocessing on the questions used to fine–tune the model; they were used
as-is from the publicly available dataset along with their corresponding Bloom’s
Revised Taxonomy labels. We once again fine-tuned the model with default
hyperparameters which took approximately 5 min and incurred a cost of $0.08.
Upon completion, the student-generated questions were passed as the GPT-3
model’s input, outputting Bloom’s labels for each question.

4.4 Results
We first begin with our human evaluation by experts, using the 9-item rubric,
across all 143 student-generated short answer questions. As indicated in the
Data Analysis section, the rubric criteria are hierarchical and they can be marked
as “not applicable”, causing the following rubric items to be ignored. For example,
if a question was marked “not applicable” for the first rubric criteria of
understandable, that would reduce the question pool for the other eight criteria.
We report the percentage relative to the remaining questions, followed by the
absolute percentage, i.e. (relative % / absolute %).

4.4.1 Short Answer Question Quality
We found that 91% of the student-generated short answer questions were rated
understandable. All the questions rated as understandable, were also rated
domain related (100%/91% total). Most questions were also free of grammatical
errors (90%/82% total), which includes typos and punctuation mistakes. As a
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question’s clarity is related to the understandability of the question, there were
also many questions (95%/87% total) that were evaluated as being clear. If a
question assessed course content that has not been assessed by an existing
question found somewhere in the module, then it was marked as not rephrasing
(84%/73% total). This is one of the lowest rubric criteria percentages and also
presented a challenge for the evaluators to find agreement on, as they achieved a
Cohen’s Kappa of κ = .66.

The evaluation shows that most of the questions are rated as answerable by
future students in the course (97%/84% total). Similar to the criteria about being
domain related, the central criteria (100%/84% total) was perfect for the
remaining pool of questions. This not only means the question relates to the
chemistry, but it specifically targets a concept that is addressed in the current
module. According to the evaluators, knowledge required for answering the
questions is obtained in one place (68%/57% total) or in different places
(30%/25% total) throughout the module. However, there were two questions that
were evaluated as needing both the instructional text and external knowledge
(2%/1% total).

Figure 4.1: The two questions on the left are evaluated as being high quality and
the two questions on the right are low-quality, due to being vague (top) and

grammatically incorrect (bottom)

As described in the Data Analysis section, a question was categorized as high
quality if it passed all nine rubric criteria, including being evaluated as would you
use it (38%/32% total). In total, 46/143 (32%) student-generated short answer
questions met this criterion by passing all nine rubric items and were deemed to
be of high quality. Figure 4.1 shows two questions evaluated as high quality and
two questions evaluated as low-quality. The question in the upper-right was
evaluated as not being understandable and the question in the bottom-right was
not grammatical.

4.4.2 Higher Order Cognitive Processes
In order to assess the cognitive-level of the student-generated questions, the
evaluators applied Bloom’s Revised Taxonomy to them. Due to some of the
questions having certain rubric criteria marked as “not applicable” and thus
ending the review, 120/143 (84%) student-generated questions were assigned a
Bloom’s Revised Taxonomy level by the evaluators. The majority categorization
was remember (52%), with understand (25%) and apply (20%) being tagged to a
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similar number of questions, followed by analyze (3%). An example of the
student-generated questions corresponding to each of these four Bloom’s
Revised Taxonomy levels is shown in Table 4.3.

Student-Generated Question Bloom’s
Level

What is the point in a titration curve that indicates the pKa value
of a weak acid? Remember

Imagine an acidic solution with a low pH. If a strong base is
added to the solution, what happens to the pH in relation to the
pKa?

Understand

If 10mL of a diprotic weak acid is fully deprotonated with 20mL
of 0.5M NaOH, how many moles of the acid and NaOH are there? Apply

When stomach acid enters the esophagus, typically with a pH of
1.5 to 3.5, calcium carbonate is often used to combat this. Why
would calcium carbonate be a good substance for this problem?

Analyze

Table 4.3: An example of a student-generated question assessed at each of the
four levels of Bloom’s Revised Taxonomy present in this study

Prior research [119, 209] has indicated that questions at the apply level and
above are categorized as targeting higher order cognitive processes. As a result,
28/120 (23%) questions tagged with Bloom’s Revised Taxonomy were evaluated
as assessing at this higher level. Since Bloom’s Revised Taxonomy level was not
included in the criteria for a high-quality question, we investigated if there was a
correlation between the two measures. Fisher’s exact test revealed that there
was a strong statistically significant association between the quality of the
question and the cognitive level (p = .003). Figure 4.2 shows the distribution of
Bloom’s Revised Taxonomy levels between questions evaluated as being low and
high quality.

Figure 4.2: The distribution of the four Bloom’s Revised Taxonomy levels
between questions evaluated as low and high quality
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4.4.3 Automatic Evaluation
We utilized the first fine-tuned GPT-3 model to classify the quality of the
student-generated questions as either low or high quality. The model agreed with
the human evaluation for 57/143 questions (40%). In the cases they disagreed
with, 85/86 mismatches were interpreted as having high quality by GPT-3 but low
quality by expert raters. There were only 13/143 questions (9%) the model
classified as low quality, suggesting it was overestimating the quality of the
questions, as 97/143 (68%) were evaluated by the experts as being low quality.
Figure 4.3 provides a confusion matrix for the quality classifications made by the
model.

Figure 4.3: Confusion matrices for the classification of a question’s quality (left)
and Bloom’s Revised Taxonomy (right)

We used the second fine-tuned GPT-3 model to classify the 120
student-generated questions to which the expert evaluators had assigned a
Bloom’s Revised Taxonomy level. The results of the model compared to the
expert evaluation, including the percentage of matches for each Bloom’s Revised
Taxonomy level between the two, are shown in Table 4.4. In total, the model
matched the expert evaluation for 38/120 (32%) student-generated questions.
The GPT-3 model has a similar distribution of remember and apply questions,
although they are often not correctly applied to the questions according to the
expert evaluation. Additionally, GPT-3 classified 17 of the questions into the two
highest cognitive levels that were not observed in our student-generated
questions. Additionally, Figure 4.3 also provides a confusion matrix for the
classification of Bloom’s Revised Taxonomy between the expert human
evaluators and the model.

Bloom’s Level Remember Understand Apply Analyze Evaluate Create
Expert Evaluation 62 30 24 4 0 0
GPT-3 59 4 29 11 10 7
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Matching % 48% 10% 4% 25% 0% 0%

Table 4.4: A breakdown of the six Bloom’s Revised Taxonomy and the number of
questions the experts and GPT-3 tagged to each level

4.5 Discussion
In this research, we utilized human experts and automatic methods to evaluate
the quality and cognitive level of student-generated short answer questions. We
found that students were able to contribute high quality questions, as evaluated
by a 9-item rubric that contained criteria assessing the linguistic and pedagogical
features of the questions. In total, 32% of the student-generated short answer
questions were evaluated as being high quality, indicating that the evaluators
could use them in the course in their present condition. Students generated these
questions through a simplistic prompt consisting of a single sentence instruction
and two textboxes embedded into a digital learning platform. Previous research
often has an overall lower percentage of high-quality questions and utilizes
external systems or scaffolding methods that require the students to spend more
time on the question generation activity [4, 22]. We believe that the
implementation we used in this study keeps students more engaged in the
learning process, by allowing them to create the question in a more natural
context as they work through the instructional text and assessments in the
platform.

The cognitive processes that the student-generated questions target were
evaluated by the two expert evaluators, which identified 23% of the questions as
assessing at a high cognitive level and the remaining 77% assessing the lower
two cognitive levels. This majority distribution of the short answer questions
assessing at the remembering and understanding cognitive levels is in line with
findings from previous work [10, 242]. These questions that assess the first two
cognitive levels can still be effective, particularly when students are first learning
new concepts, where they might need to first learn essential terminology,
methods, and formulas [119].

Automatic evaluation of the student-generated questions for both their
quality and cognitive level was suboptimal compared to previous work leveraging
different language models [41, 195], however, such prior research often evaluates
questions that are mostly at the remembering cognitive level and often involve
basic reading comprehension with no domain-related knowledge being assessed,
which are more appropriate for students at lower education levels [122]. The
student-generated questions in this study were at the post-secondary education
level, assessed chemistry knowledge, and often included domain terminology.
These differences between questions used in prior research in this study likely
contributed to the difficulty the two GPT-3 models had, even when they were
fine-tuned on relevant data for the classification tasks. The percentage of expert
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matching classifications the models achieved for the quality (40%) and cognitive
level (32%) could provide an initial estimation of the questions’ value.

4.6 Limitations & Future Work
The main limitation of this study comes from the dataset, as the 143
student-generated short answer questions that were analyzed were all in the
domain of chemistry. Including student-generated questions from other domains
could lead to more generalizable findings. Question evaluation often entails
human annotations as the ideal criterion to compare automatic methods against;
however, there is a subjective nature to human ratings. While we tried to reduce
subjectivity by using a detailed rubric for the human evaluation and achieving a
high IRR for each criterion, there still lies the potential for different evaluation
depending on who is doing the evaluation. Finally, the results of the GPT-3 model
were suboptimal, often overestimating the quality of the student-generated
questions or misclassifying Bloom's Revised Taxonomy level. The results of
these classifications were influenced by the datasets used to fine-tune them,
which was limited by public datasets that classify the educational quality of the
question and the cognitive level.

4.7 Conclusion
This work demonstrates that students can generate short answer questions that
are both linguistically and pedagogically sound without requiring an external tool
or scaffolding. In total, we found that 32% of all the student-generated questions
were evaluated as being high quality by the expert evaluators. Across all the
questions that were classified according to Bloom’s Revised Taxonomy, 23% were
evaluated as assessing high cognitive levels. Our results highlight how students
in the context of an online course can create short answer questions that can
readily be implemented into the course, providing new assessment opportunities
for essential concepts. While the automatic evaluation may be improved with
more robust datasets for fine-tuning, it offers a sufficient first pass classification
that may assist experts in their evaluation of the questions. This research helps
demonstrate one way to help scale online learning and improve educational
resources, by leveraging the students in a course. It opens further opportunities
for engaging students in the process of question generation and leveraging both
humans and language models to assist in the evaluation process.
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Chapter 5
Crowdsourcing Skill Tags for

Assessments

5.1 Introduction
The combination of data-driven knowledge tracing methods and cognitive-based
modeling has greatly enhanced the effectiveness of a wide range of educational
technologies, such as intelligent tutoring systems and other online courseware.
In particular, these systems often employ knowledge component modeling, which
treats student knowledge as a set of interrelated KCs, where each KC is “an
acquired unit of cognitive function or structure that can be inferred from
performance on a set of related tasks” [116]. Operationally, a KC model is defined
as a mapping between each question item and a hypothesized set of associated
KCs that represent the skills or knowledge needed to solve that item. This
mapping is intended to capture the student’s underlying cognitive process and is
vital to many core functionalities of educational software, enabling features such
as adaptive feedback and hints [167].

While machine learning methodologies have been developed to assist in the
automatic identification of new KCs, prior research has shown that human
judgment remains critical in the interpretation of the improved model and
acquisition of actionable insights [133, 173]. An emerging area that has the
potential to provide the human resources needed for scaling KC modeling is
crowdsourcing. Naturally, the challenge with this approach is that the population
of crowdworkers is highly varied in their education level and domain knowledge
proficiency. Therefore, as a first step towards examining and promoting the
feasibility of crowdsourced KC modeling, we studied how crowdworkers can
provide insights into different word problems that might suggest areas of
improvements and generating KCs for the questions. We took these insights via
explanations, coded them and ran them through two topic models to analyze how
they might be utilized for the task.
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5.2 Methods
Our study consists of two experiments with the same procedure, but involve
different domain knowledge. The first domain is mathematics, with a focus on
the area of shapes; the second is English writing, with a focus on prose style
involving agents and clause topics. In both domains, we deployed an experiment
using Amazon’s Mechanical Turk (AMT). Forty crowd workers on AMT, known as
“turkers,” completed the math experiment, and thirty turkers completed the
writing experiment, for a total of 70 participants. In each domain, the tasks took
roughly five minutes. Participants were compensated $0.75 upon completion,
providing a mean hourly wage of $9.

The main task of the experiment presented participants with two word
problems positioned side by side, labeled Question 1 and Question 2. In the math
experiment, both problems involve finding the area of two different structures. In
the writing experiment, both problems involve identifying the agents and actions
of two different sentences. Participants were truthfully told that past students
were tested on these problems and that the collected data indicates Question 2
is more difficult than Question 1. They were then asked to provide three
explanations on why this is the case. The specific question prompt stated: “Data
shows that from the two questions displayed above, students have more difficulty
answering Question 2 than Question 1. Please list three explanations on why
Question 2 might be more difficult than Question 1”.

5.2.1 Math and Writing Experiments
The two mathematics word problems used for the explanation task can be seen
in Figure 5.1. These problems come from a previous study of a geometry
cognitive tutor [216], where the data indicates that students struggle more with
the problem involving painting the wall (the right side of Figure 5.1). Both
problems are tagged with the same three KCs by the domain experts that created
the problems, so they assess the same content. These KCs are:
Compose-by-addition, Subtract, and Rectangle-area.

Both problems used in the writing experiment come from an online prose
style course for freshman and sophomore undergraduates (Figure 5.2). Similar to
the math problems, student data collected from the online course indicates
students struggle more with one problem over the other. The KCs were generated
by domain experts and are: Id-clause-topic, Discourse-level-topic,
Subject-position, and Verb-form.

61



Figure 5.1: The two word problems for which participants provided three
explanations in the math experiment, with the one on the right being more

difficult

Figure 5.2: The two problems for which participants provided three explanations
in the writing experiment, with the one on the right being more difficult

5.2.2 Categorization of Explanations
We collected three explanations from each of the 40 participants in the math
experiment, for a total of 120, and three explanations from each of the 30
participants in the writing experiment, for a total of 90. Overall there were 210
explanations, where each explanation is defined as the full text provided by a
participant into the answer space. These mostly consisted of sentence
fragments or full sentences, but there were several that had multiple sentences.
Such explanations were still treated as a single unit, to which the best fitting code
was applied [76].

Using data collected from a brief pilot study, two researchers followed the
process in [56] to develop a codebook from the explanations in the math
experiment, and a separate codebook for the writing experiment. This involved
assigning the participant explanations to a set of codes based on their
interpreted meaning. These codebooks were iteratively refined until agreement
on the codes was achieved. Two research assistants then applied the codebook
to the pilot data and discussed discrepancies, seeking clarity for any codes they
were unfamiliar with. Table 5.1 shows the finalized version of the codebook
applied to the collected math and writing explanation data. The codebook was
then applied to the full dataset from each domain by the two research assistants.
Next, we measured the code agreement via Inter-Rater Reliability (IRR). The
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coders achieved a Cohen’s kappa κ = 0.813 for the math experiment and κ =
0.839 for the writing experiment, which indicates a high level of agreement [124].

Code Definition Example Explanation

Math experiment

Calculation Mentions the computational
aspects involved in the
problem, e.g., subtraction or
use of area

“Because they don't know how to
calculate the area”

Clarity-Shape Relates to the understanding
of the depicted shape.

“It may be less clear which part
should be calculated because of
shading”

Clarity-Text Relates to the understanding
of the text.

“Wording is kinda confusing”

Complexity Claiming that one problem is
more complicated than the
other, without further
clarification.

“Problem two is more complicated
than problem one”

Composite Addresses an embedded
shape used in the problem.

“The picture itself shows other
objects such as windows and this
might throw off the student.”

Content General remarks about the
problem content that are not
captured by other content
subcategories.

“The numbers displayed have
decimal points”

Meta A mention of general skills
needed to solve any type of
word problem, such as
focusing, reading, and
attention.

“It takes more time to read in
problem 2 so students are more
prone to getting discouraged”

N/A Does not provide any sensible
explanation.

“340”

Shape-Layout Mentions the visual element
of the word problem's shapes.

“It is more difficult based on the
shapes presented in question two”

Step-Num Indicates one problem
requires a certain number of
steps / more steps.

“There are more steps to complete
in problem 2”

Value-Num Indicates one problem has
more variables/values to work
with.

“It has more variables”

Writing experiment

Answer # Relating to the number of “In option one there is only one
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answer choices present in the
question.

right answer”

Complexity Discusses the general
difficulty/complexity.

“More complex knowledge
needed”

Content Touches on the content of the
question.

“They have to revise it instead of
just saying what is wrong”

Meta Describing a skill required by
similar problems, at a more
meta level.

“It is hard to write”

N/A Not applicable or relevant. “Poor communication with
suppliers”

Prework Discusses the prior knowledge
or prework that might be
required to answer.

“The second isn't explained in the
coursework”

Question-type Addresses the question's type
(MCQ or free response) in the
explanation.

“Written answer instead of
multiple choice”

Question-text Mentions the question's text in
some capacity, e.g.,
longer/confusing

“Sentence 2 is more vague”

Rules Mentions the rules a student
would need to know to solve
the problem.

“Problem one only requires an
understanding of grammar”

Technical Mentions a specific technical
term that might be required to
answer.

“In problem two, the subject is not
in the beginning of the sentence”

Table 5.1: Coding dictionary for the math and writing experiment responses

5.2.3 Topic Modeling Explanations
Topic models estimate latent topics in a document from word occurrence
frequencies, based on the assumption that certain words will appear depending
on potential topics in the text. We used two topic modeling techniques, Latent
Dirichlet Analysis (LDA [30]) and Non-negative Matrix Factorization (NMF [126]),
to further analyze the explanations. LDA maps all documents, in this case the
explanations, to a set number of topics in a way such that the words in each
document are captured by the topics [9]. NMF uses linear algebra for topic
modeling by identifying the latent structure in data, the explanations, represented
as a non-negative matrix [142]. The explanation text was lemmatized and stop
words were removed, using a common NLP library in Python [29]. No further text
processing was performed on the explanation data before running them through
the models, as we wanted results without fine-tuning any parameters or heavily
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processing the data. The results of the topic models were then evaluated against
the researcher generated codes, categorizations, and the expert generated KCs
for the problems, in order to gauge their effectiveness for this task.

5.3 Results
5.3.1 Crowdworker Explanations
From the coded explanations in the math and writing experiments, we
constructed a set of themes, shown in Table 5.2, formed by grouping several of
the related codes within each experiment together [201]. In the math experiment
the first three themes, Greater Quantity, Shapes Present, and Domain Knowledge,
all comprise explanations which address features of the given problems and are
indicative of a KC required to solve the problem. Explanations that are grouped
into these three themes can be translated into KCs that fit the problem and are
indicative of the underlying skill(s) required to solve it. However, the only
explanations that suggested a KC that matched any of the expert ones
(Compose-by-addition, Subtract, and Rectangle-area) came from the Calculation
code. The fourth theme, Clarity/Confusion, pertains to the problem’s question
text or visuals being unclear and hard to decipher. This theme contains
explanations that relate to what makes the problems particularly difficult outside
of the knowledge required to solve it; from these explanations, one could also
derive ways to improve the assessment, such as making the question text more
explicit or clarifying the depicted image. The fifth theme, Irrelevant, holds the
remaining explanations – those that do not address the problem in a meaningful
way, i.e., they are too general or abstract.

Theme (# of explanations) Codes KC Improvement

Math

Greater Quantity 27 Step-num, Value-num ✔

Shapes Present 30 Shape-layout, Composite ✔

Domain Knowledge 33 Content, Calculation ✔

Clarity/Confusion 15 Clarity-text, Clarity-shape ✔

Irrelevant 15 Complexity, Meta, N/A

Writing

Process to Solve 13 Rules, Content ✔

Domain Knowledge 07 Prework, Technical ✔

Question Specific Attributes 42 Question-text,
Question-type, Answer-num

✔

Irrelevant 28 Complexity, Meta, N/A
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Table 5.2: Themes for the math (above) and writing (below) experiments created
from the coded data and if the theme is akin to a KC or an area of problem

improvement

In the writing experiment the first two themes, Process to Solve and Domain
Knowledge, are indicative of KCs that were required to solve the problems. The
only explanations that matched any of the expert generated KCs (Id-clause-topic,
Discourse-level-topic, Subject-position, and Verb-form) for the problems came
from the Rules and Technical codes. The third theme, Question Specific
Attributes, discusses the relative level of difficulty between problems, due to one
being multiple-choice and the other being free-response, or the question text
differences between the two. This theme relates explanations that address ways
to improve the assessment, such as simplifying the answer choices. Finally, the
Irrelevant theme again consists of explanations that are not meaningful or overly
general.

5.3.2 Topic Modeling to Identify KCs
The 10 topics identified by both the LDA and NMF models, along with the five
most common words associated with them, are presented in Table 5.3. From the
math experiment data, both the LDA and NMF models had comparable results to
one another. They share the same set of topic interpretations and an equally low
number of N/A topics. While certain topics in both models are attributed to KC
codes, it would be challenging to discern the explicit KC just from the terms. The
three primary themes across the ten topics from each model are calculation of
area, the visual nature of the shapes in the problems’ figures, and how one
problem is generally more complicated than the other. We expected some of the
expert-generated KCs for the math problems (Compose-by-addition, Subtract, &
Rectangle-area) to be identifiable in the topics. Surprisingly ‘subtract’ was not a
top five term for any topic nor was ‘area’ a term alongside ‘rectangle’ for any
topics.

Topic # LDA Terms LDA Topic
Interpretation

NMF Terms NMF Topic
Interpretation

Math Experiment

1 figure, question,
hard, shape,
confusing

Clarity-Shape problem, longer, figure,
steps, lines

Step-Num

2 problem,
complicated, 1,
complex, 2

Complexity area, windows, given,
figure, door

Calculation

3 step, calculation,
need, require,

Step-Num confusing, wording,
question, painted, wall

Complexity
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work

4 consider, answer,
visually,
complicated,
simple

Shape-Layout shapes, deal, irregular,
question, rectangles

Shape-Layout

5 width, 223,
calculate,
problem,
attention

Calculation numbers, deal, size,
work, need

N/A

6 area,
complicated,
window, 143, 2

Clarity-Shape complicated,
calculation,
somewhat, problem,
involves

Complexity

7 confusing, know,
abstract,
somewhat, term

Complexity simple, question,
involves, consider,
shape

Complexity

8 accommodate,
time, difficult,
shading, shape

Clarity-Shape harder, visually, figure,
shape, make

Clarity-Shape

9 instruction,
measurement,
equal, forward,
straight

N/A areas, account, figure,
need, just

Calculation

10 detail, variable,
340, long, contain

N/A difficult, calculate,
solve, door, width

Calculation

Writing Experiment

1 answer, prework,
specific, pick,
confine

Prework choice, multiple,
problem, allows,
simple

Question-type

2 multiple, choice,
1, problem,
thinking

Question-type sentence, meaning,
needs, subject,
problem

Rules

3 sentence,vague,
problem, option,
right

Question-text problem, requires,
understanding, rules,
thinking

Meta

4 long, response, 1,
free, variable

Question-type answer, free, easier,
pick, right

Question-type

5 know, comment,
paraphrase,
range, contain

Rules people, writing, hard,
write, questions

Meta

6 people, write,
simplified,
question, multiple

N/A comments, written,
eliminate, like, level

N/A
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7 need, complex,
written,
knowledge,
number

Complexity know, subject, verb,
tense, agent

Technical

8 comment,
problem, choice,
multiple, complex

Question-type answers, correct, just,
questions, incorrect

Question-type

9 comment, clause,
look, agent,
suggest

Technical clause, concept,
agent, ended, like

Technical

10 concept, rewrite,
choose, sentence,
end

Content complex, concept,
written, ended, like

Complexity

Table 5.3: Top 5 terms from 10 topics identified by the LDA and NMF topic
models

Similar to the math topics, both the LDA and NMF models produced comparable
results for the writing experiment, with slightly different terms used for the topics
between the two. The predominant topic in both models is related to the question
type, which is appropriate as it was a dominating category from the qualitative
coding. Interestingly, there are not as many topics involving Complexity or N/A,
both irrelevant codes that attribute little to no meaning. The majority of the topics
focus on the high-level features of the questions, such as the wording or type.
Topic 9 from the LDA model and topic 7 from the NMF one include vocabulary
used in two of the expert generated KCs (Id-clause-topic, Discourse-level-topic,
Subject-position, and Verb-form). However, these topics and the others are not
interpretable enough to discern such KCs explicitly from the terms.

5.3.3 Explanation Insights
In addition to some of the explanations being indicative of a KC, such as ones
that fall into the Calculation or Technical codes, many of the other explanations
suggested complications with the word problems. In the math experiment, 15 of
the 120 total explanations (12.5%) fall into the Clarity/Confusion theme from
Table 5.2. Additionally, only 15 of the 120 (12.5%) were deemed Irrelevant to the
problems, meaning that in general the majority of the explanations were either
suggestive of an improvement that could be made or a KC required to solve
them. The writing experiment had a greater number of explanations, 42 out of 90
(46.67%), that fell into the Question Specific Attributes theme in Table 5.2. Only 28
of the 90 (31.11%) explanations in this experiment were deemed Irrelevant to the
problems.
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5.4 Discussion
Firstly, we wanted to see if the provided explanations could be used to generate
fitting KCs for the problems. We found that many of the provided explanations
did address the underlying concepts required to solve a problem, more so in the
math domain than the writing domain. For example, explanations from the math
experiment in the Greater Quantity theme often discuss how one problem
required the area calculation of more shapes than the other. Solving a problem
that involves the area of multiple shapes instead of just a single one has been
identified as a knowledge component for similar problems from a previous study
[216]. This type of difficulty may be overlooked due to expert blindspot, as the
explicit steps taken to solve a problem can get grouped together when it
becomes second nature [171]. Eliciting the crowd for explanations such as these
can help bring in a diverse level of knowledge, ranging from novice to expert, that
can help to make this KC explicit.

From the writing experiment, the Process to Solve theme consists of the
most KC indicative explanations. These often discuss a step required to solve
one of the problems, which was usually at the granularity that would make it a
fitting KC. Unfortunately the explanations contributed by participants that were
indicative of KCs were relatively rare, making up only 20 of 90 (22.22%) of the
total explanations from the writing data, compared to 73 of 120 (60.83%) from
the math domain. We attribute this difference between domains due to the
knowledge required for them, as the math problems were from a middle school
class and the writing questions from a college-level writing course.

The two topic models were only able to identify a few topics, each relating to
Calculation, that fit into a code indicative of a KC that matched one an expert
generated. While the terms for the topics can be gleaned for words that suggest
a KC such as “area” or “window”, they still lack interpretability and a direct
translation into a KC. This is also true of the two models’ results in the writing
domain, which identified several topics relating to the Rule and Technical codes.
Without further interpretation, the terms suggest some vocabulary used in the
problems, but they are insufficient to derive an actionable KC without further
human processing.

Secondly, we wanted to see if the explanations provided insights into how
the assessment items might be improved. Both experiments had one theme
directly related to improving the surface level features of the problems, such as
the question text or images. For instance, in the math experiment, the theme
Clarity/Confusion addresses the confusion caused by the visual elements of the
problems. The included images for the questions are a key aspect to the
assessment and beneficial to problem solving, but may be misinterpreted in a
way the content creators may not have intended [71]. Correcting the images can
allow for better assessments; based on the explanations we received, a student
may answer incorrectly purely based on the poor image design. Across both
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domains, the 10 topics identified by each model are mostly those that indicate
areas of problem improvement. While the models performed poorly at generating
KCs from the explanations, many of the topics and terms were indicative of
student struggle due to confusion with the text or image of the problems. In total,
12.5% of the explanations in math and 31.11% in writing were considered
irrelevant to the task and presented problems. Even with limited instruction and
the varying backgrounds, participants were able to provide insights into the
problems that could be used for baseline KC generation or identifying areas of
assessment refinement.

5.5 Future Work
For future work, we plan to integrate this process in a learner-sourced context,
where participants (i.e., students) potentially have more commitment and domain
knowledge that could be leveraged [183]. This would enable us to properly train
them to provide such explanations throughout the course, rather than completing
the task once with only a brief instruction like the crowdworkers did in this study.
Ultimately, we envision a workflow in which students submit explanations for why
certain problems are difficult; these explanations are then peer reviewed and
presented to the teachers (or relevant parties) to help them identify potential KCs
and improve the assessment items. This procedure is analogous to the
find-fix-verify pattern in crowdsourcing, which has been shown to be effective
[21]. However, before reaching this point, the interpretability of the models will
need to be improved or another technique should be utilized. This study
demonstrates a first step in developing such a workflow, providing initial insights
into how crowdsourced explanations might be leveraged for KC generation and
assessment content refinement.

5.6 Conclusion
In this study, we gathered explanations for the relative difficulty between two
mathematics questions and between two English writing questions from
crowdworkers. We found that crowdworkers were able to generate valuable
explanations that were indicative of a KC required to solve the problems or a
suggestion for how to make the problems clearer. Understandably, they were able
to provide better explanations in the easier domain of middle school math than in
an undergraduate English writing domain. However, in both experiments, a
majority of the explanations either pertained to identifying a KC or area of
improvement, rather than being irrelevant. The LDA and NMF models created
topics akin to the researcher generated codes, although the interpretability of
these topics based solely on the terms is limited in usefulness. Nevertheless, the
categories from the coding and topic models ultimately assisted in clustering
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explanations that were either indicative of a KC or an aspect of the problem that
could be improved.
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Chapter 6
Learnersourcing Skill Tags for

Assessments

6.1 Introduction
Educational technologies, such as intelligent tutoring systems and digital
learning platforms, often employ a mapping of skills to assessment items in
order to measure student performance and guide them in the learning process
[26]. These skills treat student knowledge as “an acquired unit of cognitive
function or structure that can be inferred from performance on a set of related
tasks” [116]. Typically the skills mapped to assessments in these technologies
are at a fine granularity intended to measure the low level concepts assessed by
a given activity, compared to the higher level skills often found in summative
assessments that are often at the standard or learning objective level [84]. This
skill mapping is intended to capture the student’s underlying cognitive process
and is vital to many core functionalities of educational software, enabling
features such as adaptive feedback and hints [167].

While having these skills allows for student modeling and can assist in
analytical pipelines like open learner models or learning dashboards, developing
the mapping of skills to assessments poses several challenges. Traditionally an
expert is employed to create the mapping of skills to an assessment, potentially
with assistance from an instructional designer or learning engineer [115]. This
process can be arduous and often requires methods such as think-alouds to elicit
the skills from the expert while avoiding pitfalls such as expert blindspot [171].
As a result, scaling this process is challenging due to the time constraints,
resources for eliciting the skills, and recruiting the domain experts to assist with
skill tagging [145].

Attempts have been made to scale this process, as several studies have
turned to crowdsourcing to recruit a pool of humans to skill tag assessments
[157, 161]. While there was surface level success with this pool of human
judgment, prior knowledge of the domain is often required to properly generate
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and map skills to assessments [115]. Enlisting students, who have varying
domain knowledge and have been successful in related tasks, may offer a viable
solution to this problem [233].

To explore how we could potentially engage and scale a group of humans in
the skill tagging process, we sought to test a novel solution that utilized a more
knowledgeable base. To utilize students in generating skill tags, we deployed a
completely optional activity where students could input three skills, via free-text
boxes, needed to solve a problem in the context of four undergraduate online
courses. This study contributes new knowledge about student participation with
optional tasks in an online course, particularly one involving skill tagging. It also
supports how student performance correlates with the quality of their skill tags.
The results provide insights into the feasibility of leveraging students to skill tag
problems and challenge us to further investigate how we can deploy
interventions that leverage student knowledge to develop stronger learning
analytics.

6.2 Methods
The present study takes place in a digital courseware platform known as the
Open Learning Initiative (OLI). OLI is an open-ended learning environment that
offers courses from a variety of domains (such as chemistry, biology, statistics,
economics, etc.) and consists of interactive activities and diverse multimedia
content [27]. OLI activities are presented in two distinct categories:
low-stakes/formative, providing students with feedback, or
high-stakes/summative, used to evaluate student learning at the end of a
structured unit. The low-stakes formative assessments in the system are all
optional, allowing the students to scroll by them and focus purely on the
instructional content. These assessments consist of a variety of question types
such as multiple-choice questions, short answer, and dropdown style questions.
Each question in OLI is broken down into one or more problem steps, where each
step corresponds to an opportunity for student input. For instance, if a question
asks a student to set the value of three dropdown boxes, then it consists of three
unique steps that each have their own set of feedback and correct or incorrect
responses. This distinction between a problem and its steps is important, since
students may work on a problem, but not complete all of the steps due to
reasons such as not knowing the answer to some of them, wanting to skip them
to save time, or getting distracted [42].

6.2.1 Context and students
For this study, we used data collected from four instances of two different
introductory courses, one in chemistry and the other in Python programming. The
two instances of the introductory chemistry course were taught at a community
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college in the western United States. This course provides students with
fundamental knowledge of chemistry concepts, preparing them for future biology
and chemistry courses. The course is generally geared towards freshman and
sophomore undergraduates from varying degree backgrounds, with a majority of
the students pursuing a chemistry-related degree. Our data comes from the fall
semester of 2020, when the introductory chemistry course was offered in the OLI
system.

The OLI content the students used for these two instances of the chemistry
course in this study covers the topic of elements and compounds and consists of
thirteen separate modules. Each module consists of several topic headers,
containing paragraphs of instructional text and low-stakes activities embedded
throughout. There are a total of 33 low-stakes and completely optional activities
embedded throughout the thirteen modules of the course, not including the skill
tagging activity used for this study. These activities include multiple-choice
questions, selecting the correct option from a dropdown, drag-and-drop
exercises, and submitting a short answer to compare against an expert response.
Each of these activities is broken down into steps, depending on the components
of the activity, for a total of 178 unique steps. For instance, if a problem has three
fill-in-the-blank boxes, then that problem would consist of three unique steps.
Every activity and their steps provide students with feedback after they have been
answered. Additionally, students have unlimited attempts to answer these
questions, so they can continue until they are correct or choose to advance,
regardless of a correct or incorrect response.

The two instances of the introductory Python programming course were
taught at an R1 university in the northeastern United States. This course provides
students with knowledge on introductory concepts in the Python programming
language, preparing them for their future coursework in computer science. This
course was taught to incoming master’s students in a human-computer
interaction program who indicated by self-report they did have a sufficient
understanding of programming concepts. The collected data we used comes
from the summer semesters of 2020 and 2021, when the course was offered in
the OLI system. The OLI content in the two instances of the programming course
covers the topic of iteration and consists of twelve separate modules. There are a
total of 41 low-stakes and completely optional activities embedded throughout
the twelve modules of the course. Each of these activities is broken down into
steps, depending on the activity, for a total of 113 unique steps.

While the four course instances were taught in different semesters by
different instructors, students were provided with the same set of instructions
regarding the use of the OLI materials. They were not required to answer the
questions found throughout the OLI modules or even access them. Students
were provided with an “Introduction to OLI'' module, which is an overview of how
to effectively make use of the system and the concepts that will be covered in the
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course. All the instructional materials in OLI were optional to the students; there
was no requirement for them to access or complete the materials. However,
students were assessed on the concepts covered by the OLI materials, so it was
beneficial for the students to utilize them. A further breakdown of the course
offerings, including the anonymized instructor, semester, and number of students
that accessed the course materials can be found in Table 6.1.

Course Semester Instructor Student
Count

Number of
Activities

chem 1a fall 2020 t1 23 33
chem 1b fall 2020 t2 26 33

programming 1a summer 2020 t3 33 41
programming 1b summer 2021 t4 30 41

Table 6.1: The four course instances used in this study

6.2.2 Data collection
We focus on an activity we added to this course that involves the students
generating three skills that they believe are required to solve a particular problem
in the course1 . In the chemistry course, this activity is found in the ninth module
of the OLI content for this section of the course. This module provides several
paragraphs of instructional text, two worked examples, and several low-stakes
multiple-choice questions on the topic of nomenclature for ionic compounds with
polyatomic ions, along with this single activity. In the programming course, this
activity is found in the fourth module of the OLI course. This module covers the
concept of python for-loops, consisting of several paragraphs of instructional
text, multiple-choice questions, and two small programming exercises. In both
courses, the activity is presented in the same low-stakes and optional format as
the other activities found prior in the course. This task that prompts students to
generate the three skills can be found in Figure 6.1. In the activity, students are
prompted to generate three skills that are needed to solve the problem stated
above this task. The students input the text in three different free-text boxes. The
instructions for the task are minimal to encourage student participation, as
lengthier text might deter students [204]. We also provide them with a domain
contextual example of what a skill might look like for a different, non-related,
problem in1 the course. Aside from that, no training or scaffolding was provided
to the students to help them generate three skills for the question. We
intentionally wanted to keep this low-stakes and optional, to examine the
students’ participation with the task and the quality of their contribution.
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Figure 6.1: The self-explanation activity and accompanying question presented to
the students

Student data was collected from their interactions with the 33 activities found in
the chemistry course and the 41 activities in the programming course, in addition
to the skill generation task. Since the skill generation task is our outcome, we
focus our analysis on the other activities that the students completed in the
courses, which consisted of a total of 178 unique steps in the chemistry courses
and 113 unique steps in the programming ones. On average, an activity in the
course consists of 3 unique steps, such as a single activity having the student
select from three different dropdown menus. All of the activities found in the OLI
course were completely optional; students could do as much or as little as they
desired. For instance, sometimes a student would begin working on an activity,
but did not complete all of the parts in it. As a result, the system logs them
having worked on that activity and also provides the exact number of steps that
they completed. For this data set in particular, it is more common for students to
fully complete an activity if they start it, i.e., they will attempt all of the steps of a
problem.

Our data also consists of three metrics related to student performance on
the activities. When a student works on a step for a given activity, OLI records if
their first attempt at that step was correct or not. A first attempt at a problem can
be a strong indicator of a student’s current understanding of the concepts being
assessed [48]. Relatedly, the total number of incorrect attempts made at a given
step and the total number of correct attempts are recorded. These numbers can
potentially exceed the total step count, as a student could correctly answer a
question, then select an incorrect answer to see the feedback, then select the
correct response once again, registering two correct and one incorrect attempt
for that step.
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6.2.3 Analysis
In order to assess the quality of the three student-generated skills, we had two
item-raters evaluate each skill to determine how much it fit the problem, if it was
at the appropriate granularity, and its match to the three skills previously
assigned to it by other domain experts. Both raters had content-area expertise,
ample experience in skill tagging, and experience applying coding schemes to
student data. After familiarizing themselves with the OLI course module once
again, they were instructed to go through each skill one at a time and place it into
one of four categories. The inter-rater reliability was calculated, and the
Cronbach’s alpha value was .94, as the raters only disagreed on the
categorization of a few skills. These discordant skills were discussed among the
two raters until they reached a consensus on the categorization of them using
the coding categories. Each of these categories was assigned to a numerical
ranking (1-4) that also represented the goodness of the student-contributed skill.
In this instance, a ranking of 1 was the best and indicated that the
student-generated skill matched the expert-generated skill. A ranking of 4 was
the worst and indicated that the student-generated skill was not relevant to the
problem and therefore it did not match. A full description of the four categories
can be seen in Table 6.2. These four categorizations are based evaluation rubrics
from previous studies for assessing math problem solving skills and evaluating
knowledge concept maps from novices and experts [73, 111].

Category Rank Description Examples
Expert
Match

1 The skill matches one of the three
skills originally tagged to the problem
by an expert.

“Combine ions in
the smallest ratio”

Match, Not
Granular

2 The skill is very similar to one of the
three expert-generated ones,
however it could be more specific.

“Know charges on
polyatomic ions”

Problem
Relevant

3 The skill is technically utilized in the
problem, but it is not necessarily
what is being assessed given the
context.

“Write the formula
that reflects this
ratio”

No Match 4 The skill is not relevant to the
problem, it is not being utilized or
assessed by it at all.

“Knowing
nomenclature”

Table 6.2: The four categories the student-generated skills were placed into
along with an example student generated skill from the chemistry course

The two problems used in each of the courses were selected due to previous
student data collected during their use indicating that students tend to struggle
on both of them, with 40% of students getting an incorrect answer on their first
attempt. Additionally, they each had three skills previously assigned to them by
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domain experts upon the creation of the courses. Our two item-raters verified
that these three skills were appropriate for the problems and at the correct
granularity for what was being assessed. While having experts evaluate
student-generated skills is not scalable, in the scope of this study, we want to
first investigate the feasibility of having students generate such skills. To assess
the quality of these student-generated skills, we need to compare their outputs to
that of experts that typically do this task. A list of the three skills tagged to each
problem can be found in Table 6.3.

Expert Skills - Chemistry Expert Skills - Programming
1. Identify the cation and anion and
their charges

1. Iteration over a value using the
range() function

2. Write chemical formulas for ionic
compounds that contain polyatomic
ions

2. Utilizing a print statement in
conjunction with numerical
statements

3. Combine the ions in the smallest
whole number ratio

3. Modify an existing program to fit a
new set of instructions

Table 6.3: Three expert-generated skills for chemistry (left) and programming
(right)

6.3 Results
The student-generated skills were evaluated by experts to determine their quality.
Then we analyzed how the student interactions in the course correlated with both
student participation on the task and the quality of their contribution. We
leveraged measures of central tendency to report the varying categories of the
student-generated skills. Then we investigated the different patterns of student
participation and performance in the course by looking at their interactions with
the varying low-stakes activities and their steps embedded throughout the
course. A Bonferroni correction was applied to post hoc analyses that follow [15].

6.3.1 Students Generating Accurate Skill Tags
Across all four course instances used in this study, a total of 112 students
accessed the OLI course. Among those 112 students, 64 of them completed the
optional skill generation task where they generated three skills for the presented
problem. To assess the quality of these student-generated skills, we had two
expert item-raters evaluate all 192 of their contributions. The raters checked if
the student-generated skills matched an expert-generated one, indicating that
they were accurate, meaning they are written at the correct level of specificity and
model part of the knowledge required to solve the problem. This evaluation
revealed that 23 (11.98%) of the contributed skills matched an expert-provided
item and 65 (33.85%) matched a skill, but needed to be refined for further
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granularity. Table 6.4 shows the further breakdown of the item-rater
categorizations of the 192 student-generated skills into the four different
categories. Over half (54.17%) of the student-generated skills fell into the bottom
two categories, which indicates that even with revision they are not usable or
particularly useful. All of the skills labeled as the fourth ranking, “No Match”, were
one word or nonsensical responses by the students for the activity.

Course Student
Skill
Count

Expert
Match

Match,
Not

Granular

Problem
Relevant

No
Match

chem 1a 36 7 15 6 9
chem 1b 54 13 24 14 3

programming 1a 54 1 14 29 10
programming 1b 48 2 12 24 10

Totals
(%)

192 23
(11.98%)

65
(33.85%)

72
(37.50%)

32
(16.67%)

Table 6.4: The count of the four ranking categories assigned to skills in each of
the courses.

Each of the activities in the two course domains had three skills tagged to it by
domain experts, previously shown in Table 6.3. Student-generated skills from the
chemistry courses were able to match all three of the expert skills for the
problem, while only two of three expert skills were matched by students in the
programming course. Table 6.5 shows an example of a student-generated skill
from both domains that was categorized as an expert match by the two
item-raters.

Expert Skill - Chemistry Expert Skill - Programming
Identifying the cation and
anion and their charges

Knowing how to use a print statement in
conjunction with numerical statements

Student Skill - Chemistry Student Skill - Programming
Identifying the cation, anion,
and the charges

Knowing how to manipulate equation to have
odd numbers printed instead of even numbers

Table 6.5: An example of a student-generated skill that matches one of the
chemistry expert skills (left) and one of the programming expert skills (right)

6.3.2 Student Participation and Performance
In total, of the 112 students that were part of four instances of the courses, 19 of
them did not access any of the course materials in the given modules. A total of
49 students were enrolled in the two chemistry courses, where 38 students
accessed the materials, and 30 students did the skill generation activity. The
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chemistry course consists of a total of 33 optional low-stakes activities, not
including the skill generation one, and on average the students completed 26.38
of the 33 (79.93%) activities. The two programming courses had 63 students
enrolled in the courses, where 59 students accessed the materials, and 34
students did the generation activity. The programming course consists of 41
optional activities, not including the skill generation one, and on average students
completed 30.48 of the 41 (74.34%) activities.

To determine which features of student interaction in the course were
indicative of their participation in the skill generation activity, we performed a
series of unpaired t-tests on their behavior with the other low-stakes activities
found in the courses. This revealed a significant difference between the student
participation with the other activities in both the chemistry and programming
course and their participation in the skill generation task. An unpaired t-test
showed there was a significant difference in the number of activity steps
completed by students in the chemistry course who did the skill generation tasks
(M = 164.57, SD = 20.11) and those that did not do the task (M = 39.47, SD =
52.45), t(47) = 11.819, p < .0001. A similar result was found for the programming
course, with students doing the skill generation task (M = 111.03, SD = 18.41)
and those that did not do the task (M = 54.00, SD = 40.27), t(61) = 7.699, p <
.0001. Students who did the skill generation task were also more likely to
complete all of the steps present in the activities embedded throughout the
course. Similar significant results were observed for the number of activities
done by a student and their participation for the skill generation task in the
chemistry course, t(47) = 11.483, p < .0001 and the programming course t(61) =
6.299, p < .0001. This result supports the previous one, as the activities found
throughout the course are composed of multiple steps and a subset of students
completed all the 33 or 41 low-stakes activities respectively.

We then investigated whether student interactions with the other low-stakes
activities in the course correlated with the quality of their generated skill
contribution, to see how we might predict or promote better skills from the
students. While there was a significant difference found between student
participation in the skill generation task and participation in the other low-stakes
activities throughout the course, it was not found to significantly correlate with
the quality of the student contribution in the chemistry course (⍴ = 0.18, p =
0.333) or programming course (⍴ = 0.18, p = 0.303). Additionally, student
performance on the activities as measured by their first attempt correct on the
problems was not significantly correlated with the quality, measured by
itemraters categorization, of their skill contributions for the chemistry course (⍴ =
0.29, p = 0.119) or programming course (⍴ = 0.09, p = 0.615).
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6.4 Discussion
In this research, we investigated how we might enlist students working through
online courses to assist in the skill tagging process. We found that even with the
task being optional and only providing brief instructions with no scaffolding,
some students were able to generate skills that matched experts, ones that could
be utilized without any modifications. However, a majority of the generated skills
were not sufficiently detailed, and even with revision, they would not be suited for
use. The students who chose to participate in the task typically completed all of
the other optional activities found in the course. In exploring what features of
student interaction in the course correlated the quality of the skills they
generated, we did not find any significant correlations with their performance on
the other low-stakes activities. These findings suggest that students can
generate and tag expert level skills to problems from an optional and low-stakes
activity within an online learning environment, but they might need more
scaffolding to consistently do it.

Evaluation of the 192 student-generated skills indicated that, while not the
majority, students across both course domains generated skills that matched all
three expert ones in chemistry and two out of the three for programming.
Students in all four course instances generated many skills that were categorized
as a match but needed a bit more granularity to directly match an
expert-generated skill. While these levels of skills cannot be as readily used as
the direct match ones, they could still serve as an initial baseline to feed into a
learning analytics system. We are hopeful that through more instruction or
guidance, we can increase the quality of the student contributions by having
them think deeply about the granular details of the skills they use to answer the
activities.

With all the low-stakes activities embedded throughout the course being
completely optional, including the skill generation one, there was still a high
amount of overall participation from the students. This was particularly
surprising for an optional activity, which generally has lower participation rates
due to the lesser perceived value students see in completion of the activity [77].
While past skill generation methods have relied on experts (e.g., [115], our study
presented the task as a lowstakes activity, seemingly fitting in among the
fill-in-the-blank and drag-and-drop activities found on the other modules of
course content. Leveraging just the native features of the system, in this case
free-text boxes for short answer questions, we were able to provide students with
the skill generation task seamlessly and without requiring them to utilize yet
another platform. It is likely participation would be even greater if the task was
required by students or embedded into a high-stakes assessment, such as a quiz
question. However, this approach would introduce another series of potential
complications, such as requiring it to be graded and potentially introducing an
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abundance of unacceptable questions contributed by students that do not wish
to do the activity but are forced to in the context.

6.5 Limitations
Our contributions should be interpreted against the following limitations. First,
our study was conducted across two domains, chemistry, and programming. As
skill tagging is directly influenced by the domain of the problems, this may impact
the generalizability of the results. Second, students from each domain skill
tagged a single problem in each instance of the course. Similar to the domain,
the content of the problem is directly related to skills it assesses, so our results
might differ depending on the problem or domain. Finally, we did not heavily
investigate the background of the students doing the task. It is possible that
some students were more familiar with the concepts of skill tagging or
articulating this process more than others.

6.6 Conclusion
This research demonstrates a first attempt at directly engaging students in the
processes of skill tagging problems across the domains of chemistry and
programming. Our results highlight how student behaviors regarding their
completion of activities in the course are indicative of their participation on the
optional skill tagging task. Requiring the student to do the activity, such as
putting it in a high-stakes assessment or having students use another system, is
not necessarily required for contributions, some of which are evaluated as being
on par with expert ones. Although rare, students can provide expert-level skills,
without detailed instructions, prior training, or scaffolding. However, most of the
skills students generated would not be usable, even with revision. As a result, we
do not recommend enlisting students in the skill tagging process through this
mechanism, as they might require training or better scaffolding to submit usable
skills. This research demonstrates an attempt to help scale online learning
analytics and improve educational resources, by leveraging the students in a
course. This work opens further opportunities for both engaging students in the
process of skill tagging and promoting their behavior that leads to a higher
quality contribution for future tasks. Future research should consider expanding
domains and experimenting with different amounts of training or scaffolding for
the task.

82



Chapter 7
Equitable Participation in

Learnersourcing

7.1 Introduction
Having students develop assessment questions has a long history as a learning
activity, one that has shown real benefit in supporting student learning [4]. These
types of activities integrate deep engagement around subject matter with critical
thinking and creative practices [57]. Through the instrumentation of this process,
student engagement can be leveraged in ways that provide meaningful data
around student interaction, in addition to new student-generated learning assets
that can support future learners [61]. This is known as a form of learnersourcing,
where students complete activities that produce content that can be leveraged by
future learners [110]. The continual creation and improvement of these questions
allows for a greater breadth of topic coverage, helps to identify well-constructed
and valid assessments, and as a result, enables improved learning opportunities.

While asking students to write new quiz or exam questions is a time-honored
approach in many classrooms, current learnersourcing investigations emphasize
the online context, where students’ efforts to master domain content within a
digital learning environment can be effectively studied at scale [81]. Specific
implementation of learnersourcing activities can vary greatly between instructors,
however, particularly in whether completion of these activities are treated as
mandatory or optional [162]. This distinction between mandatory and voluntary
implementation is important: students who are offered a choice in completing
learnersourcing tasks perceive these activities as having a greater value, gain
more autonomy in the course, and contribute higher-quality questions compared
to students that are required to participate [213]. Indeed, efforts to force student
engagement may backfire; requiring these tasks can lead to student
disengagement as they participate with minimal effort in order to satisfy the
requirements of the activity [107].
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On the other hand, making the activities optional comes with its own risks:
the activities may be neglected by the students who could benefit the most from
these interventions, as oftentimes only the most driven students choose to
participate in optional tasks [96]. This type of self-selection would have an
impact beyond the individual students for learnersourcing activities, as only the
top performing students may be generating data and new questions. This would
in turn influence the question banks, hints, analytics, etc. generated by the
students, limiting the diversity of the contributions, creating potential bias in the
generated content, and potentially excluding a novice point of view that could be
beneficial to learners [171]. Ideally students of all backgrounds and knowledge
levels would participate in learnersourcing activities, but previous work has
indicated otherwise – that participation for these question generation activities
can be as low as less than 5% [59]. These findings are further complicated by
where such investigations take place, with a majority of the learnersourcing
activities being deployed at top R1 four-year universities around the world [227].

Therefore, more research is needed to investigate which students are
participating in these learnersourcing activities, how these interventions work
and who they are targeting. To this end, we deployed several optional MCQ
generation activities in three online courses across two community colleges in
the United States. Accompanying these tasks is a demographic survey to help
better understand the students in the courses. As students worked throughout
the first four or five weeks of their online course, they were presented with several
opportunities to generate a MCQ for the given unit they were working through. We
analyzed which students were participating and how their demographics and
performance in the course may have influenced their participation. Our work
makes the following contributions towards online learning and learnersourcing
tasks. First, we provide insights into the attributes of students that participate in
learnersourcing activities. Second, we derive a set of performance measures
commonly found in online courses that can serve as predictors of student
participation in related activities

7.2 Methods
This study was conducted in three different courses at two 2-year community
colleges located on the west coast of the United States. All three courses took
place online during the fall 2021 semester and IRB approval was received for the
survey and activities added to the courses. The three courses were introductory
chemistry, advanced chemistry, and introductory statistics. The two chemistry
courses were taught at the same community college, but by different instructors.
Students taking introductory chemistry were required to have previously passed a
course covering the topics of linear algebra. For the advanced chemistry course,
students were required to have passed both a linear algebra course and an
introductory chemistry course at the college-level. The statistics course was
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taught at a separate community college by a third instructor. The only
prerequisite for students in that course was to have passed a college-level
intermediate algebra course.

We utilize data that came from four to five week-long units that were used
towards the beginning of each course. This data consists of student interactions
in the course along with their performance on the quizzes found at the end of
each unit. There were a total of 64 students across all three courses, who were
taking the courses to receive credit towards their respective degrees. There were
no students enrolled in both of the two chemistry courses. Table 7.1 shows the
number of learners in each course, along with a breakdown of their self-reported
gender, ethnicity, and first-gen status. It also includes the number of units, and
therefore quizzes, in the respective course, as introductory chemistry had five
units and advanced chemistry and introductory statistics had four units. Our
demographic questions accepted free text input to allow students the highest
flexibility in identifying their background.

Course Units Students Male Female First-gen Hispanic/
Latin

Asian White

Introductory
Chemistry

5 17 5 12 8 12 3 2

Advanced
Chemistry

4 18 4 14 12 12 5 1

Introductory
Statistics

4 29 6 23 19 15 6 8

Table 7.1: Breakdown of the students in each course, their demographic
information, and the number of units

All three courses were deployed on the same learning platform, known as the
Open Learning Initiative (OLI), which has been used in previous studies involving
online learning at community colleges [20, 198]. It contains functionalities akin to
popular learning environments often utilized at universities or in MOOCs. Each
unit in these courses was equivalent to a chapter in a textbook, consisting of five
to ten related topics and taking up roughly one week to cover. The units contain
multiple pages of instructional content featuring text and brief instructional
videos. These webpages also host multiple low-stakes activities interspersed
amongst the instructional content for students to use as practice opportunities.
They include multiple choice, short answer, essay, matching, and fill-in-the-blank
style questions. All of these activities act as formative assessments, intended to
provide students with instructional feedback. As such, they are completely
optional and do not account for the students’ grade in the course. Additionally,
students may make any number of attempts on these activities, receiving instant
feedback on their response with each attempt. In all three of the courses, each
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unit concludes with a summative assessment in the form of a quiz that tests
students on the material covered in that unit. The quizzes consisted of only
multiple-choice or fill-in-the-blank questions and ranged from 4 to 22 questions.
Students’ scores across all of the quizzes counted towards a low percentage
(5-15%) of their final grade in the course. All student data collected from OLI is
securely stored in accordance with its IRB approval. In addition to the OLI
platform, students in these courses utilized a learning management system for
the other parts of their course, such as submitting homework assignments or
viewing announcement posts.

7.2.1 Data Collection and Analysis
Our dataset came from the four to five week-long units at the beginning of each
course, with four primary components: 1) Demographic survey, 2) Formative
assessments, 3) Summative assessments, 4) Learnersourcing activities.

Demographic survey
When students first accessed the learning environment which hosts the
formative and summative assessments, they were prompted with a brief
demographic survey to complete. The survey asked the students to specify their
gender identity, ethnicity, and if they were a first generational (first-gen) college
student in their family. Students that did not fully complete this survey were not
included in the present study. Additionally, as many of the responses were
free-form, we had two researchers standardize the student responses (e.g., fixing
typos), during this process there were no discordant cases.

Formative assessments
Throughout each course there are multiple formative assessments, commonly
referred to as problems, embedded amongst the instructional text and videos
intended to provide the students with practice opportunities and immediate
feedback. They consist of multiple-choice, short answer, essay, matching, and
fill-in-the-blank style questions. These activities are optional and do not impact
the student’s grade in the course. Table 7.2 shows the total number of formative
and summative assessments in each course – note that these do not include the
count of the MCQ generation activities, which we describe below.

Summative assessments
The end of each unit concludes with a page summarizing the content that was
covered in the unit. This page also contains a link to the unit’s quiz that students
complete for a small percentage of their final grade. It consists only of
multiple-choice and fill-in-the-blank style questions that can be automatically
graded. In this study, the smallest quiz contains 4 questions, and the largest quiz
contains 22 questions
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Learnersourcing activities
At the end of each unit in each course, we placed a learnersourcing activity that
prompts students to generate an MCQ targeting any concept they learned from
the unit. The interface of the MCQ generation activity includes the brief
instructions for the students. The two bullet points shown in the activity’s
instructions reflect the unit’s learning objectives which the MCQ should target.
The number of MCQ generation activities is equal to the number of units in the
course.

Course Formative
Assessments

Summative
Assessments

Introductory Chemistry 126 5
Advanced Chemistry 94 4
Introductory Statistics 37 4

Table 7.2: The number of formative and summative (quizzes) assessments in
each course

Our primary variable of interest is student participation with the learnersourcing
activities in their respective course. In this study, we consider a student as having
participated in the learnersourcing activity if they submitted a contribution that
contains a question pertaining to the course’s learning objectives, a correct
answer choice, and three distractor options. If a student submitted a blank
response, a random string of characters, or made no submission, they were not
counted as having participated in the learnersourcing activity. Note that it was
rare for students to exhibit this behavior, as the vast majority of them either
skipped the learnersourcing activities or made an honest effort in their
contribution to generate a MCQ. To measure student performance on the
formative assessments, we used their accuracy on the first attempt they made
on the problem. If they correctly answered the problem on their first attempt, then
they would have the first-attempt correct for that problem. Previous research
indicates that a student’s first attempt at a problem is a strong indicator of their
knowledge of the material [48]. In the forthcoming analysis we utilize the average
quiz scores of the students, as it represents their performance in the course up to
that current point in the course.

7.3 Results
To understand which students were participating in the optional learnersourcing
tasks, we first analyzed their demographic information in relation to their
potential contributions to the learnersourcing activities. Next, we investigated the
different patterns of student participation and performance by looking at their
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interactions with the formative and summative assessments embedded
throughout the courses.

7.3.1 Student Demographics
In total, 37 of the 64 (57.81%) students participated in at least one of the
learnersourcing activities in their respective courses. To further investigate
student participation with the learnersourcing activities in the courses, we looked
at the demographics for students that contributed to any of the MCQ generation
tasks. A Fisher’s exact test revealed that there was no statistically significant
association between gender and participation with any of the learnersourcing
activities (p=.484). Similarly, there was no significant association between
first-gen status and student participation with the learnersourcing activities
(p=.794). We also looked at participation on the tasks related to the students’
self-reported ethnicity. A chi-square test of independence showed that there was
no significant association between ethnicity and task participation, X 2 (2,
N=64)=.27, p=.873. Table 7.3 provides the count of students who participated in
the learnersourcing activities in each demographic group.

Participated in
learnersourcing

Students Male Female First-gen Hispanic
/Latin

Asian White

Yes 37 9 28 26 23 7 7
No 27 6 21 18 17 6 4

Table 7.3: Student participation with any of the learnersourcing tasks and their
demographic information

For the 37 students that participated in at least one or more of the
learnersourcing activities, we investigated if their demographic background had
any statistically significant effect on the percentage of learnersourcing activities
they completed. Note there were four learnersourcing opportunities in advanced
chemistry and introductory statistics, and five opportunities in introductory
chemistry. An unpaired two tailed t-test revealed that there was no significant
effect of gender on the number of learnersourcing activities students worked on,
t(35)=.95, p=.348, with females (M=.59, SD=.09) doing slightly fewer of the
learnersourcing activities than males (M=69, SD=.10) on average. There was
likewise no significant difference in the percentage of learnersourcing activities
between first-gen students (M=.62, SD=.08) and others (M=.61, SD=.13),
t(35)=-.12, p=.452. A Kruskal-Wallis test was conducted to examine the
differences of the students’ self-reported ethnicity and the percentage of
learnersourcing activities they completed. There was once again no significant
differences in participation found between groups, H(2)=0.516, p=.773.
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While students’ demographic background had no significant association
with their participation with the learnersourcing tasks or the amount of
learnersourcing tasks they engaged with, we also looked at how this information
might be associated with their overall performance and participation with the
other material found throughout the course. We found no significant effect of
gender on the percentage of other formative assessments done in the course,
t(62)=1.48, p=.144, where males (M=.54, SD=.11) and females (M=.41, SD=.09)
had similar participation levels. There was likewise no significant effect of gender
on the average quiz scores, t(62)=.61, p=.546, with males (M=.73, SD=.05) and
females (M=.68, SD=.09) receiving similar scores. Similar null effects were found
for the formative assessments, t(62)=-1.07, p=.287, and quiz scores, t(62)=-.83,
p=.407, between first-generation students (Mformative=.46, SDformative=.09; Mquiz=.71,
SDquiz=.07) and others (Mformative=.38, SDformative=.11; Mquiz=.65, SDquiz=.11). Finally, a
Kruskal-Wallis test revealed no significant formative assessment participation,
H(2)=3.913, p=.141, or quiz scores, H(2)=1.233, p=.539, between students’
self-reported ethnicities.

7.3.2 Student Performance
We focus on how student participation and performance within their respective
course might reflect their contribution to the learnersourcing activities. Our study
showed that students who participated in the learnersourcing activities (M=.62,
SD=.07) had a significantly greater percentage of the formative assessments
completed in their respective course than those that did not (M=.18, SD=.02),
t(62)=-8.07, p<.005. Relatedly, there was a significant positive correlation
between the percentage of formative assessments done by the students with the
number of learnersourcing activities they completed, r(62)=.28, p<.005. Table 7.4
provides the average amount of formative assessments completed in each
course by students who participated or did not participate in the learnersourcing
activities, including those students that only did the quizzes in these averages.

Course

Learnersourcing Participation
Average Percentage of
Formative Assessments

Completed

Average Quiz Scores
(out of 100)

Yes No Yes No
Introductory Chemistry 73.71 26.98 72.83 67.00
Advanced Chemistry 61.70 10.99 67.50 73.03
Introductory Statistics 49.83 22.45 64.23 71.27

Table 7.4: Average percentage of formative assessments completed in the
courses and the average quiz scores, out of 100, by students that participated in

the learnersourcing activity (Yes) and those that did not (No)
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While participation in the course was positively correlated with doing the
learnersourcing activities, as expected, we wanted to further investigate if these
activities were more likely to be done by students already performing highly in the
course or if it was a true mix of the students. We found that students who
performed better on the formative assessments in the course were also more
likely to contribute to the learnersourcing activities. These students who
participated in the learnersourcing activities (M=.48, SD=.10) compared to those
who did not (M=.66, SD=.03) had a higher percentage of correctness on their first
attempt in the formative assessments, t(62)=2.99, p<.005. For the 37 students
that participated in one of the learnersourcing tasks, there was also a positive
correlation between the number of learnersourcing activities completed and the
percentage of correctness of first attempts on the formative assessments,
r(35)=.35, p<.005.

Next, we examined student performance on the summative quizzes at the
end of each unit. Table 7.4 also shows the average quiz scores across all three
courses divided into two groups based on if the students participated in any of
the learnersourcing activities. We analyzed how a student’s performance on the
quizzes correlated with the amount of learnersourcing activities they completed.
Ultimately, we found a significant positive correlation between a student’s
average quiz score and the number of learnersourcing activities they did in the
course, r(s)=.26, p<.05. Interestingly, across all three courses, seven students had
a perfect quiz average, receiving full credit for all four or five quizzes depending
on the course. However, of those seven students, only one of them participated in
the learnersourcing activities, contributing to all four of them in the advanced
chemistry course.

7.4 Discussion
In this study, we investigated how student demographics and performance within
online community college courses influenced their participation in a
learnersourcing activity that involves generating a multiple-choice question. We
found that 37 of the 64 students across the three courses participated in at least
one of the learnersourcing activities; these students came from a variety of
demographic backgrounds, expressed in terms of self-reported gender, ethnicity,
and first-gen status. Our analysis revealed a correlation between the completion
of formative assessments and the likelihood of students participating and
contributing to a higher number of learnersourcing activities. Interestingly, the top
10% of students, as determined by their quiz score averages, did not participate
in any of the learnersourcing activities.

We found no significant relationships between the students’ demographic
background and their participation with the learnersourcing activities. This may in
part be due to our students primarily reporting the same gender and ethnicity,
thus decreasing the potential diversity of our sample. While we did not identify

90



any significant effects, our data indicates that a majority of the students from all
the reported ethnicities, genders, and first-generation status made at least one
contribution to an optional learnersourcing task. While we were encouraged to
see that students of all backgrounds were participating, learnersourcing research
should continue to collect demographic information to ensure all students are
being reached by the activities and interventions. A core benefit of
learnersourcing student-generated questions is that their unique perspectives
and backgrounds can be incorporated into the questions they create, ultimately
avoiding expert-blindspot and contributing to a more diverse pool of questions
[171]. However, if the learnersourcing activities are skipped by students, knowing
why they are not participating in them and the backgrounds of those students,
could potentially inform methods on how to better include all students.

As expected, due to prior research in the area, student participation with the
formative assessments in the course was positively correlated with their
performance on the summative assessments [34]. We found that students who
did more of the formative assessment were also more likely to participate in the
learnersourcing activities. There was also a strong positive correlation between
the number of formative assessments done and the number of learnersourcing
activities students completed. This further suggests students might follow a
completionist approach when working through the online materials and not skip
the learnersourcing activity, which has been previously reported by [213].

In addition, student performance on both the formative and summative
assessments was found to correlate with participation and the number of
learnersourcing activities completed. These results indicated that the highest
performing students were skipping the task. As mentioned, 7 of the 64 students
achieved a perfect score on all the quizzes in their respective courses, yet among
these seven students, only one participated in the learnersourcing activities,
doing all four offered in their advanced chemistry course. This brings into
question if the optional presentation of the learnersourcing activities could be
potentially excluding the lower performing students that might benefit the most
from these interventions, as well as the top performing ones. While we seek to
ideally find a middle ground and engage the full range of learners in the current
study, such activities may potentially exclude both the most and least in-need
students. The MCQs generated from these top students might be closer to the
level of instructor ones due to the advanced domain knowledge they possess
[150].

7.5 Limitations
Our contributions should be interpreted against the following limitations. The
three community college courses used in this study feature students from three
different self-reported ethnicities. While this is representative of the
institution-wide demographics, courses at other community colleges might yield
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a different student population. Additionally, we focused our analysis on data from
three STEM courses. Extending this research to more courses from other
domains, including non-STEM ones, might provide a more representative sample
of students. However, since previous learnersourcing work neglects to provide
demographic information, our current focus provides a first step at investigating
how the different student populations of a course might be contributing to
learnersourcing tasks. Additionally, we did not ask the students to report their
native language, which might influence students’ willingness to participate in the
MCQ generation process.

7.6 Conclusion
In this work, we investigated the optional participation of students in the form of
learnersourcing, where they generated multiple-choice questions relevant to the
course content. Across three community college courses, our results showed
that student demographics had no significant effects on their participation with
the learnersourcing activities. However, we had moderate participation from a
wide range of students on the task across all courses. Our analysis suggests that
students’ likelihood of participation with a learnersourcing activity is more
dependent on their participation and performance with the other assessments
found in the course, rather than on their demographic background. Additionally,
we identified several features of student performance in the courses that
influenced their participation with learnersourcing activities. These findings
demonstrated that better performing students were likely to participate in
learnersourcing, yet students at the lowest and highest end of the performance
spectrum may still neglect such activities. This work contributed the first study
which explicitly investigates the demographics of students participating in
learnersourcing activities. It demonstrates that optional learnersourcing activities
can still garner participation from a diverse set of students. Future
learnersourcing efforts may incorporate participation and performance analytics
to encourage students to contribute to learnersourcing tasks.
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Chapter 8
Crowdsourcing the Evaluation of

Assessments

8.1 Introduction
Large scale learning environments, such as massive open online courses
(MOOCs) and other digital courseware platforms commonly utilize
multiple-choice questions (MCQs) to measure student learning [36]. These
assessments provide beneficial data on student learning, while maintaining
objectivity and efficiency in grading. Traditionally, MCQs are authored by a party
that has expertise in the given domain, such as an instructor or subject matter
expert [32]. However, a continually growing research effort has led to the
advancement of MCQ authoring methods that do not rely on experts [92]. For
instance, automatic question generation (AQG) systems that leverage the latest
techniques in machine learning and natural language processing have allowed
MCQs to be created at scale [122]. Keeping the human in the loop, methods such
as learnersourcing, which involves students within a course generating novel
content to be used by future learners, have also been leveraged to author MCQs
at scale [107, 168, 212].

These popular methods allow for the scaling of educational MCQ creation,
but they are highly susceptible to generating questions that contain detrimental
flaws [4, 98]. Previous work leveraging AQG or learnersourcing methods to create
MCQs often utilize the questions without fully assessing their quality or have
other students assess the quality [2, 54]. While previous research has
demonstrated these methods can be capable of generating expert-level MCQs,
the criteria used to judge this quality is often ill described or lacking the
pedagogical implications of the questions [10]. For instance, MCQs generated via
AQG systems are commonly evaluated using machine learning readability
metrics, which commonly omit flaws in the question identified by expert
evaluators [206]. In an educational context, when these questions that contain
flaws are utilized by students, it can be detrimental to their learning, mislead
learning analytics, and ultimately waste valuable student time [46]. Poor question
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quality can have a detrimental impact on learners in both formative and
summative assessments, highlighting the importance of leveraging high quality
MCQs effectively in both types of assessments. Evaluating the quality of MCQs
before students utilize them is a challenging task that can be difficult to scale, as
it often requires human expertise or the time-consuming task of applying a rubric
[63].

An emerging area that has the potential to provide the human resources
needed for scaling MCQ evaluation is crowdsourcing. Naturally, the challenge
with this approach is that the population of crowdworkers is highly varied in their
education level and domain knowledge proficiency [161, 164]. Therefore, as a first
step towards examining and promoting the feasibility of crowdsourced MCQ
evaluation, we studied how crowdworkers can leverage the item-writing flaws
(IWF) rubric to assess the quality of MCQs used in formative assessments. The
IWF rubric consists of 15 items that assess whether an educational MCQ is
acceptable for use in the classroom or not [31, 196]. It provides a standardized
way to evaluate the quality of MCQs that includes the pedagogical value of the
question and its answer choices through the various criteria. This rubric has
previously been applied to educational MCQs used in both formative and
summative assessment environments across a plethora of domains [162, 181].

In this work, we explored how crowdsourcing could be leveraged in the
quality evaluation of MCQs from the domains of calculus and chemistry. We
deployed a crowdsourcing task that had crowdworkers apply the IWF rubric to
multiple questions in order to evaluate their quality with respect to their
pedagogical value. They also evaluated a different set of questions for their
cognitive level, according to Bloom’s Revised Taxonomy [119]. Using the wisdom
of the crowds, we evaluated if the majority response aligned with expert
evaluation of the same questions. This study contributes to the literature on
question evaluation and educational crowdsourcing. First, it introduces a method
for scaling the evaluation of educational multiple-choice questions. Second, we
demonstrate the effectiveness of crowdsourcing the quality assessment of
multiple-choice questions. Third, we highlight the domain differences that may
impact question evaluation, which has implications on designing and leveraging
crowdsourcing in educational tasks.

8.2 Methods
Our study consists of two experiments with the same procedure but involve
different domain knowledge. The first domain is calculus, with a focus on the
concept and formula of arc length; the second is chemistry, with a focus on
atomic theory. In both domains, we deployed an experiment using Amazon’s
Mechanical Turk (AMT), a general marketplace to crowdsource tasks [178]. Forty
crowdworkers on AMT completed the calculus experiment and forty different
crowdworkers completed the chemistry experiment, for a total of 80 unique
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participants. Participants were recruited for the task without using any specific
strategy or filters. Instead, the task was posted on the AMT platform,
accompanied by a title and description that informed participants they would
evaluate multiple-choice questions in one of the two respective domains. In each
domain, the tasks took roughly eight minutes to complete. Participants were
compensated $1.50 upon finishing, providing a mean hourly wage of $11.25.

The study begins by explaining how multiple-choice questions used in an
educational context can target different cognitive processes, such as recall or
application. The language used in this description is intended for an audience
that does not have a background in learning sciences and we avoided the use of
any jargon or other domain-specific terms. Following this, two examples of MCQs
that assess at the recall level and two MCQs that assess at the application level
of Bloom’s Revised Taxonomy are shown to the crowdworker. The content of
these questions depends on the domain of the task, such that a crowdworker
doing the task for calculus would see example calculus questions. Each example
has an accompanying explanation of why it is considered to evaluate this specific
level of cognitive ability. Following these instructions and examples, the
crowdworker is then presented with three MCQs from their survey’s domain,
either calculus or chemistry. These three MCQs contain the question text,
referred to as the question stem, the correct answer choice, and three alternative
answer choices, sometimes referred to as distractors. The crowdworker is then
asked to indicate if the question assesses at the recall or application cognitive
level. To encourage them to think deeply about their choice, we also asked them
to explain why they made their selection. This is a common crowdsourcing tactic
that previous research has shown to increase the quality of crowdworker
responses [52].

Following this, they advance to the main task of the study, which involves the
crowdworker applying the 15 criteria IWF rubric to three separate questions from
the task’s domain. These rubric criteria are slightly modified to be presented to
the crowdworker as a series of yes or no questions, asking if the given MCQ
violates the criteria or not. Once all 15 criteria have been applied to the MCQ, they
were prompted to briefly explain any flaws they identified in the question text or
answer choices. They were also prompted to select if the MCQ they had just
evaluated assessed the recall or application cognitive level. After this, they
continue to the second and third questions where they repeat the process,
evaluating a total of three MCQs in either calculus or chemistry.

8.2.1 Calculus & Chemistry Questions
Each crowdsourcing task utilized a total of six unique questions, with the
calculus MCQs assessing the concepts of arc length and the chemistry ones
assessing the concepts of atomic theory. The three MCQs used for the initial task
of identifying the cognitive process as being recall or application were different
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from the three MCQs used for the IWF rubric evaluation. All the questions were
previously used in an online higher-ed course, either calculus 1 or introductory
chemistry, used by several community colleges in the western United States.
Figure 8.1 shows the three MCQs used for the calculus task on the top and the
three MCQs used for the chemistry task on the bottom. These questions were
selected as they contain a differing number of flaws, as well as different types of
flaws.

Figure 8.1: The three MCQs on the top row were used for the IWF task in the
calculus domain and the bottom three MCQs were used for the IWF task in the

chemistry domain

8.2.2 IWF Rubric & Cognitive Level
To evaluate the quality of the MCQs used in this study, a set of guidelines to
identify item-writing flaws (IWF) in MCQs was utilized. These guidelines come
from previous research that established a taxonomy of 31 validated MCQ writing
guidelines [86]. The modified version of the rubric used in our study consisted of
15 unique criteria that have been previously tested and validated in prior studies
[31, 53, 181]. A complete list of the 15 criteria that make up the rubric can be
found in Table 8.1. Note that the criteria span a variety of criteria that assess the
different parts of the question, such as the question text, answer choices, and
correct option. In addition to evaluating the presence of IWFs, the cognitive
process an MCQ assesses was evaluated. Each MCQ was categorized into one
of two levels of cognition: recall or application, based on Bloom's Revised
Taxonomy, inline with previous research [17, 93]. Recall questions only test the
recall of facts or basic comprehension, while application questions assess higher
cognitive abilities including the application and analysis of learned concepts.

Item-Writing Flaw Attributes of questions that do not contain the flaw

Grammatical cues All options should be grammatically consistent with the
stem and should be parallel in style and form

Logical cues Avoid clues in the stem and the correct option that can
help the test-wise student to identify the correct option

96



Word repeats Avoid similarly worded stems and correct responses or
words repeated in the stem and correct response

Greater detail in the
correct option

Often the correct option is longer and includes more
detailed information, which clues students to this option

Lost sequence in
data

All options should be arranged in chronological or
numerical order

Absolute terms Avoid the use of absolute terms (e.g. never, always, all) in
the options as students are aware that they are almost
always false

Vague terms Avoid the use of vague terms (e.g. frequently,
occasionally) in the options as there is seldom
agreement on their actual meaning

Negative stem Negatively worded stems are less likely to measure
important learning outcomes and can confuse students

Implausible
distractors

Make all distractors plausible as good items depend on
having effective distractors

Unfocused stem The stem should present a clear and focused question
that can be understood and answered without looking at
the options

No correct answer
or > 1 correct
answer

In single best-answer form, questions should have 1, and
only 1, best answer

Unnecessary
information in stem

Avoid unnecessary information in the stem that is not
required to answer the question

‘All of the above’ Avoid all of the above options as students can guess
correct responses based on partial information

‘None of the above’ Avoid none of the above as it only really measures
students’ ability to detect incorrect answers

‘Fill in the blank’ Avoid omitting words in the middle of the stem that
students must insert from the options provided

Table 8.1: The rubric of 15 item-writing flaws used to evaluate the multiple-choice
questions

Two evaluators rated each of the six MCQs used in the IWF crowdsourcing task
based on the 15 IWF guidelines, using the exact same rubric that the
crowdworkers utilized for this study. Both evaluators were experts in the content
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areas of calculus and chemistry, had extensive experience creating MCQs, and
had received multiple training sessions in crafting high-quality assessments.
Using the IWF rubric, the evaluators applied the criteria to the text of each
question and its 4 answer options. The inter-rater reliability (IRR) values across all
six MCQs were calculated between the two evaluators. It includes the percentage
agreement and Cohen’s Kappa κ statistic [11] as a measure of IRR for all rubric
items. The two item raters achieved perfect agreement with one another (100%, κ
= 1.00) and there were no discrepancies to resolve for any of the IWF criteria.
Although both evaluators were experts with perfect inter-rater reliability, their
prior knowledge and linguistic preferences may still influence their application of
the IWF rubric.

8.2.3 Data Analysis
After the two experts evaluated the quality of the MCQs using the IWF rubric and
the cognitive level they assess, we analyzed the results between them and the
crowdsourced application of the rubric. In order to determine if the crowdworkers
could effectively apply the IWF rubric for each criteria, we used the majority
response to that criteria. For instance, if thirty of the forty crowdworkers in the
calculus task said the question violated the first IWF criteria, then we use that as
the crowds’ response since it is from the majority. This is known as the wisdom
of the crowd and is a popular method used to aggregate crowdsourced
responses [120].

8.3 Results
8.3.1 IWF Rubric Accuracy
Across all three questions used in the calculus domain, the majority crowdworker
vote matched the experts’ evaluation perfectly. For the three questions in the
chemistry domain, the majority crowdworker vote matched the expert’s
evaluation for all but one of the criteria for a single question. This criteria the
crowdworkers failed to identify was the logical cue contained in Q6.
Crowdworkers’ evaluation of the questions in the calculus domain matched on
average 33.40 out of 45 (74.22%) of the IWF criteria identified by expert
evaluation. For the chemistry domain, the average was extremely similar, as on
average crowdworkers’ matched the expert evaluation for 33.43 out of 45
(74.29%) of the IWF criteria.

A breakdown of the crowdworker and expert agreement percentages for
each IWF criteria across each question can be found in Table 8.2. Across all six
questions, the criteria of grammatical cues, negative stem, and unfocused stem
were the three that had the highest average agreement between crowdworkers
and the expert evaluators. The three criteria across all six questions with the
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lowest average agreement, but still in the majority, were word repeats, lost
sequence in data, and absolute terms.

Chemistry Calculus

Criteria Q4 Q5 Q6 Q4 Q5 Q6

Grammatical cues 90 92.5 77.5 90 80 70

Logical cues 85 87.5 27.5 80 80 67.5

Word repeats 60 72.5 52.5 65 67.5 82.5

Greater detail in the correct
option

70 75 65 70 67.5 85

Lost sequence in data 77.5 72.5 62.5 57.5 57.5 60

Absolute terms 72.5 67.5 60 65 70 67.5

Vague terms 82.5 77.5 75 77.5 77.5 77.5

Negative stem 82.5 77.5 80 75 77.5 77.5

Implausible distractors 72.5 77.5 80 82.5 70 57.5

Unfocused stem 77.5 85 82.5 80 85 82.5

No correct answer or > 1
correct answer

85 62.5 72.5 87.5 77.5 70

Unnecessary information
in stem

67.5 77.5 72.5 77.5 55 67.5

‘All of the above’ 80 77.5 77.5 77.5 77.5 77.5

‘None of the above’ 80 82.5 80 80 82.5 75

‘Fill in the blank’ 70 70 72.5 77.5 75 80

Average 76.8 77 69.2 76.2 73.3 73.2

Table 8.2: The percentage of crowdworkers that evaluated each IWF criteria the
same as the expert evaluators for the given question

The overall agreement between crowdworker and expert evaluations for all three
questions in each domain was similar, ranging from 69% to 77%. In chemistry, the
top three criteria with the highest agreement were the same for two criteria, but
differed on one as chemistry’s third highest criteria was fill in the blank instead of
negative stem. Additionally, crowdworkers had more difficulty with greater detail
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in the correct option compared to lost sequence in data, for this domain. In
calculus, one criteria from the top three lowest and top three highest agreement
differed from the overall ones. Crowdworkers struggled more with all of the above
instead of word repeats and did better at identifying fill in the blank compared to
logical cues.

8.3.2 Cognitive Level Accuracy
The average number of questions the crowdworkers correctly identified the
cognitive levels of can be seen in Table 8.3. Across the six questions from each
domain, the majority of crowdworkers correctly identified the cognitive level for
all six calculus questions. For chemistry, five of the six questions had their
cognitive level correctly identified by a majority of the crowdworkers. An unpaired
two tailed t-test showed there was a strong significant difference in the
crowdworker accuracy for identifying the cognitive level of questions in the
domain of calculus (M=4.85, SD=2.59) compared to chemistry (M=3.9, SD=0.81),
t(39) = 3.257, p < .001.

Calculus Question
(Cognitive Level)

Average
Accuracy

Chemistry Question
(Cognitive Level)

Average
Accuracy

1 (application) 82.5% 1 (application) 75%

2 (recall) 82.5% 2 (recall) 90%

3 (application) 80% 3 (recall) 82.5%

4 (application) 75% 4 (application) 40%

5 (application) 80% 5 (recall) 85%

6 (recall) 85% 6 (recall) 85%

Average 80.83% Average 76.25%

Table 8.3: The average accuracy of crowdworkers in identifying the cognitive
level of questions in each domain, with questions 1-3 being in the pretest and

questions 4-6 being used in the IWF task

The cognitive level identification task was split into two sections. In the first
section, the crowdworkers were asked to determine the cognitive level of three
questions as part of a pretest at the beginning of the survey. In the second
section, they were instructed to identify the cognitive level of each question
immediately after applying the IWF rubric to it. We hypothesized that
crowdworkers would be more accurate on the questions they applied to the IWF
rubric to, since they spent more time on task with those questions. However, the
results from the three calculus questions from the pre-test compared to the three
calculus questions in the IWF task indicate there was no significant difference in
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the cognitive level identification accuracy, t(39) = - 0.529, p = .599. Similar results
were found for chemistry, as there was no significant difference observed
between the accuracy on the three pretest questions and the three IWF task
questions, t(39) = 1.817, p = .077.

We further hypothesized that crowdworkers who performed better at the
cognitive level identification task would also perform better when applying the
IWF rubric. For calculus, there was a strong significant and positive correlation
between a crowdworker’s accuracy on the cognitive level task and their accuracy
on the IWF task, r(39) = .60, p < .005. Similar results were observed for chemistry,
as there was also a strong significant and positive correlation between the
accuracy of the cognitive level and IWF identification tasks, r(39) = .48, p < .005.
Additionally, we found no significant difference between the number of flaws
identified in a question with the cognitive level it assesses in this study.

8.4 Discussion
In this study, we investigated the feasibility of crowdsourcing the evaluation of
educational multiple-choice questions (MCQs). We found that in the domain of
calculus, the crowdsourced application of the IWF rubric to three MCQs matched
the expert application of the rubric exactly. In the domain of chemistry, we found
similar results between the crowdsourced task and expert evaluation, achieving
an exact match on every criteria except one. On average, crowdworkers matched
74% of the 15 IWF criteria applied across all three questions in both domains. For
identifying the cognitive level each question assesses, crowdworkers correctly
identified it for all six calculus questions and five of the six chemistry questions.
Our results showed that crowdworkers with little to no domain expertise can
accurately evaluate the quality of MCQs from higher-ed STEM domains by
applying the IWF rubric.

When applying the IWF rubric to six MCQs - three from calculus and three
from chemistry - the crowdworkers consistently demonstrated high accuracy in
evaluating three specific criteria. These criteria were grammatical cues, negative
stem, and unfocused stem. All three of these flaws were not present in the MCQs
from either domain, which a majority of the crowdworkers correctly identified.
Two of these criteria involve surface level features of the question, such as the
grammar or use of a negative word in the question’s text. These criteria could be
evaluated using automatic methods through implementation of a natural
language processing library or even keyword matching [218]. However, identifying
that a question stem is unfocused, causing it to be misunderstood or
unanswerable without looking at the answer choices, would be more challenging
to programmatically assess, as it may rely on prior knowledge and a more
comprehensive understanding of language.

While the crowdsourced majority applied the IWF rubric perfectly to the
calculus MCQs, they missed a single criteria present in the last chemistry
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question. This criteria is referred to as logical cue, which asked the crowdworkers
“Are the question text and correct answer choice free of any clues that may help
identify the correct answer?”. For this question, viewable in the bottom right of
Figure 8.1, it may appear at first that there are no cues that indicate the
correction option. However, there is a convergence cue present in the question,
as the words protons and neutrons are each repeated twice throughout other
answer choices, suggesting that the correct option might be a combination of the
two. While rare, these convergence cues can be found in multiple-choice
questions, as the alternative answer options tend to share keywords used in the
correct answer [234]. A previous study by [221] analyzed 2,770 MCQs from
medical exams administered at their university and found that 0.2% of them
contained this flaw.

In this study, forty unique crowdworkers were employed to evaluate
chemistry and calculus questions separately. This sample size was chosen
based on previous crowdsourcing studies that utilized user evaluation to achieve
consensus, determining that forty crowdworkers provided saturation [161].
Additionally, the agreement threshold of 50% or higher with the expert evaluation
aligned with prior crowdsourcing research [120]. It was observed that using a
smaller number of crowdworkers would yield different results, as the majority did
not immediately match the expert evaluation for all criteria. The ultimate goal is
to identify consensus or a clear majority while minimizing the number of
crowdworkers, thus saving time and money. However, it is important to note that
this optimal cutoff may vary depending on the crowdworkers and the type of
questions, necessitating further research in this area in the future.

Crowdworkers correctly identified the cognitive level of all six MCQs used in
the calculus task and five of the six MCQs in the chemistry task. While this is a
high accuracy rate for a task that can be challenging to even experts [8], in this
case the crowdworkers had a 50% chance to correctly guess the answer. When
prompted to identify the cognitive level of a given question, they were only
presented with the two options of recall or application. We intentionally designed
it to include just these two options, one from the lower levels of Bloom’s Revised
Taxonomy and one that represents a higher order question [17]. For this study, we
wanted to see if crowdworkers could make this distinction of lower or higher
cognitive process before asking them to select from all six levels of the
taxonomy. Previous research often questions the validity of all six levels of the
taxonomy, as it may create the misconception that cognitive processes at each
level are separate and that certain skills are more challenging or significant than
others [188]. However, previous research has validated the distinction between
lower and higher order cognitive processes, although it is not necessarily aligned
with the specific six levels of Bloom's Revised Taxonomy [187].

The chemistry question that crowdworkers misidentified the cognitive level
of can be found in the bottom left of Figure 8.1. We believe crowdworkers
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incorrectly thought this was a recall question since the answer choices only
contain the name of elements on the periodic table. However, to identify the
correct element, the student needs to use the two provided values in the question
to make a calculation. This makes the question at the application level, as you
need to apply a particular equation to achieve the correct answer.

Finally, we found a strong significant difference between crowdworker
accuracy on the IWF portion of the task based on their accuracy of cognitive
levels. We attribute this to potentially identifying crowdworkers that were
devoting the most effort and paying attention to the task, rather than those
crowdworkers having prior knowledge about Bloom’s Revised Taxonomy or the
IWF rubric. Interestingly, across both calculus and chemistry, there was no
significant difference in the crowdworker accuracy for identifying the cognitive
level of the MCQs they applied the IWF rubric on. We believed since
crowdworkers were spending more time on those questions, as they applied the
15 rubric criteria to them, that they would have a better understanding of what it
is asking and thus achieve a higher accuracy. However, this was not the case for
the present study, as no significant difference was found.

8.5 Limitations & Future Work
We identified several limitations in the present study that might influence the
results in other domains or with other questions. For this work, we only utilized
questions from the two STEM domains of calculus and chemistry that were used
in higher-ed courses. Including questions from other domains and from different
grade levels would likely alter the outcome of this task. Secondly, depending on
when the study is deployed, the pool of crowdworkers that complete the task
might be better or worse. Even with demographic surveys at the start of the task,
it can be difficult to truly understand the backgrounds of the crowdworkers and
how it might influence their success or failure for evaluating these MCQs.
Additionally, we have a limited sample size of questions that assess two different
cognitive levels. Our limited sample is constrained by a set of questions for which
we have multiple expert evaluations using the IWF rubric. Finally, only two levels
of Bloom’s Revised Taxonomy were used in this study. While these two levels
were selected due to them denoting lower order (recall) or higher order
(application) cognitive levels based on prior work [93], participants could have
potentially correctly guessed between the two options when answering those
questions.

Future work should look to expand the crowdsourcing of educational MCQ
evaluation using other domains and different questions. While the domains we
used are fairly complex, different domains might be more or less suitable for this
crowdsourcing task. The Bloom’s Revised Taxonomy levels used could also be
expanded to include all six classifications, rather than only using recall and
application. To help scale the evaluation of MCQs using the IWF rubric, some of
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the criteria could be automatically assessed using programmatic methods. For
instance, using string matching one could easily identify if a question contains all
of the above or is a fill in the blank question. This in turn could make the
evaluation process more efficient, by requiring the crowdworkers to only evaluate
the MCQs using criteria that require human knowledge. Another potential that
builds on this work is having the crowdworkers suggest or make improvements
to the MCQs based on the flaws that they identified. This could help yield more
high quality questions, as sometimes MCQs contain one or two flaws that are
trivial to fix, which could then make them into high quality questions.

8.6 Conclusion
In this paper, we proposed a novel crowdsourcing task for evaluating the quality
of educational multiple-choice questions using criteria from the item-writing
flaws rubric. The results indicate that crowdworkers can accurately assess the
quality of multiple-choice questions across distinct subject areas. We highlight
how certain flaws may be easier or harder for crowdworkers to identify,
depending on the subject area. Our results also demonstrate how crowdworkers
can effectively identify the cognitive level of questions at the lower and higher
levels of Bloom’s Revised Taxonomy. These results provide the demonstrated
success of a method for scaling the evaluation of educational MCQs. This work
also opens up further opportunities for developing scalable methods for
evaluating educational questions using features related to their pedagogical
values.
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Chapter 9
Automatically Evaluating MCQs for

Quality

9.1 Introduction
Multiple-choice questions (MCQs) are a widely used form of assessment in
higher education, both for formative and summative evaluations. MCQs are
advantageous because of their efficiency to score, objective grading, ability to
generate item-analysis data, and the shorter time required for students to
respond [36]. In recent years, the task of authoring educational MCQs is no longer
specific to instructors, and the popularization of automatic question generation
(AQG) systems further scaled up this process [122]. Another method for scaling
the creation of educational MCQs is having students take part in the process of
question creation, commonly referred to as a form of learnersourcing [212].
Student-generated questions often have higher quality, and target more complex
cognitive processes compared to AQG [91]. The process of generating questions
also has educational benefits for students and can lead to positive learning
outcomes, such as improved retention and transfer [107].

While student-generated questions typically have higher quality than those
created through automated methods, their quality may widely vary due to
multiple uncontrollable factors [162]. On one hand, poorly designed MCQs may
exhibit characteristics that can be exploited by pattern recognition and guessing,
thus leading to shallow learning [69]. On the other hand, ensuring high-quality
MCQs, whether created by AQG or students, is itself a challenging task. Common
evaluation methods used by previous research include using experts, other
students, or automated methods [140]. Even though automatic methods are
most efficient, they come with important caveats. Notably, existing automated
methods often rely on the surface-level features of a question, such as the
readability of text length, without considering the pedagogical value it adds to the
assessment [11]. Additionally, these methods are often applied to datasets
consisting of questions targeted at lower academic grade levels, such as basic
reading comprehension, or questions that are not used in an educational context
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at all [91]. While the use of human experts might provide the most accurate
assessment of question quality, the manual evaluation process often lacks
standardization and efficiency [122]. However, human evaluation can provide a
more in-depth analysis, considering the question’s potential to support learning.
For instance, the Item-Writing Flaws (IWFs) rubric is an effective evaluation
method which considers the pedagogical value of the question and its answer
choices through various criteria [31, 53]. This rubric typically consists of 19 items
that assess whether an educational MCQ is acceptable for use in the classroom
or not. However, applying this rubric to a large number of questions can be
time-consuming and often requires human expertise.

To address this gap, we explored two automatic methods to evaluate
educational MCQs using the IWF rubric. The first method utilizes a rule-based
approach to apply the rubric, making it easy to modify and maintain
interpretability, while not requiring a large training dataset. Our second method
relies on GPT-4, a large multimodal model capable of processing text inputs and
producing text outputs, which has achieved human level performance on various
professional and academic benchmarks [175]. This second method prompts
GPT-4 to apply the IWF criteria to the provided questions one at a time. Using
student-generated questions from four distinct subject areas, we evaluated both
methods and compared them to human expert evaluation that also utilized the
IWF rubric. We investigate to what extent a rule-based multi-label classifier and
GPT-4 can accurately identify IWFs in student-generated MCQs.

9.2 Methods
9.2.1 Dataset
The datasets used in this study were collected from a digital learning platform
used by several public universities and community colleges in the western United
States. The data comes from students using the platform in their respective
courses during the 2020 and 2021 academic years. The four courses are
introductory Chemistry, introductory Biochemistry, introductory Statistics, and a
course on learning how to effectively collaborate, referred to as CollabU.
Students in these courses were undergraduates, towards the beginning of their
studies, and pursuing either a two- or four-year degree.

As students worked through the digital learning materials on the platform in
their respective courses, they were prompted to create a multiple-choice question
(MCQ). The prompt asked students to create a single MCQ about a topic they had
recently learned in their course. Each MCQ consists of a question text, known as
the stem, and four answer choices, one of which must be denoted as correct. The
creation of this MCQ was done directly in the digital learning platform with no
additional tools utilized. Students did not receive any assistance or feedback as
they created their questions. Additionally, it was presented in the same visual
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manner as the other activities found on the platform. From each of these four
courses, we randomly selected 50 student-generated questions to utilize for this
study, resulting in a total of 200 MCQs.

9.2.2 Human Evaluation
In order to assess the quality of the student-generated MCQs, we utilized a series
of guidelines for identifying Item-Writing Flaws (IWFs), which are based on a
taxonomy of 31 multiple-choice item-writing guidelines [85]. The exact rubric we
used for the study was a modified version that consists of 19 unique items and
has been used and validated in previous studies [31, 53, 162]. Following [221], a
question with 0 or 1 flaw identified by the rubric is considered acceptable and any
questions with 2 or more flaws is considered unacceptable. This distinction is
used to determine if a question could be utilized in a class as a formative
assessment that the instructor would trust. A full description of the 19 items that
make up the rubric can be found in Table 9.1.

Item-Writing Flaw Attributes of questions that do not contain the flaw
Ambiguous or
unclear information
(87.50%, κ = 0.66)

Questions and all options should be written in clear,
unambiguous language

Implausible
distractors
(96.00%, κ = 0.82)

Make all distractors plausible as good items depend on
having effective distractors

None of the above
(100%, κ = 1.00)

Avoid none of the above as it only really measures
students ability to detect incorrect answers

Longest option
correct
(98.50%, κ = 0.83)

Often the correct option is longer and includes more
detailed information, which clues students to this
option

Gratuitous
information
(89.50%, κ = 0.71)

Avoid unnecessary information in the stem that is not
required to answer the question

True/false question
(100%, κ = 1.00)

The options should not be a series of true/false
statements

Convergence cues
(89.50%, κ = 0.70)

Avoid convergence cues in options where there are
different combinations of multiple components to the
answer

Logical cues
(88.00%, κ = 0.68)

Avoid clues in the stem and the correct option that can
help the test-wise student to identify the correct option

All of the above
(100%, κ = 1.00)

Avoid all of the above options as students can guess
correct responses based on partial information
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Fill-in-blank
(100%, κ = 1.00)

Avoid omitting words in the middle of the stem that
students must insert from the options provided

Absolute terms
(100%, κ = 1.00)

Avoid the use of absolute terms (e.g. never, always, all)
in the options as students are aware that they are
almost always false

Word repeats
(97.00%, κ = 0.83)

Avoid similarly worded stems and correct responses or
words repeated in the stem and correct response

Unfocused stem
(94.50%, κ = 0.79)

The stem should present a clear and focused question
that can be understood and answered without looking
at the options

Complex or K-type
(94.00%, κ = 0.78)

Avoid questions that have a range of correct responses,
that ask students to select from a number of possible
combinations of the responses

Grammatical cues
(92.50%, κ = 0.76)

All options should be grammatically consistent with the
stem and should be parallel in style and form

Lost sequence
(97.00%, κ = 0.89)

All options should be arranged in chronological or
numerical order

Vague terms
(98.50%, κ = 0.93)

Avoid the use of vague terms (e.g. frequently,
occasionally) in the options as there is seldom
agreement on their actual meaning

More than one
correct
(100%, κ = 1.00)

In single best-answer form, questions should have 1,
and only 1, best answer

Negative worded
(100%, κ = 1.00)

Negatively worded stems are less likely to measure
important learning outcomes and can confuse students

Table 9.1: The rubric of 19 Item-Writing Flaws used to evaluate the
student-generated multiple-choice questions. The bracketed numbers indicate

agreement percentage between raters and Cohen’s κ value for each item

Two item raters evaluated each student-generated MCQ, following the 19 IWF
guidelines. Both raters had content-area expertise across all four domains, ample
experience developing multiple-choice questions, and multiple prior training
sessions in writing high quality assessments. Using the IWF rubric, the raters
went through each of the 200 student-generated MCQs and applied the rubric to
the question text and accompanying answer choices for each student
contribution. The inter-rater reliability (IRR) values between the two evaluators for
each rubric item are also reported in Table 9.1. It includes the percentage
agreement and Cohen’s Kappa κ statistic [148] as a measure of IRR for all rubric
items. All items were at either a near perfect or substantial level of agreement
between the raters. The two evaluators then met to resolve any disagreements in
their evaluations and discussed discordant questions until they reached a
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consensus on the coding. We acknowledge that, despite the two expert
evaluators’ backgrounds and high IRR, they could still interpret the
student-generated questions differently, based on their prior knowledge and
linguistic preferences [11].

9.2.3 Rule-Based Evaluation
The task of automatically applying the Item-Writing Flaws rubric to MCQs is a
multilabel classification problem, as each question may be matched with several
criteria [6]. In order to implement this automated method, we followed a
rule-based approach that applies each individual rubric criteria via its own logic.
Rule-based approaches have been used in similar educational tasks such as
classifying the Bloom’s Revised Taxonomy of a question [88]. Such an approach
is particularly effective when the problem suffers from a lack of training data, as
is the case in the present study, due to a lack of public datasets containing
questions that are evaluated for their educational quality [95]. Furthermore, a
rule-based approach allows for vastly improved interpretability compared to
traditional black-box classification approaches, such as neural networks [231].

Working alongside the human evaluators, we constructed a script that is
composed of a programmatic method for each of the 19 IWF rubric criteria. It
uses several Python libraries and three different pre-trained large language
models (LLMs) to implement the 19 different criteria. The logic for many of the
criteria involved string manipulation, such as checking if the longest option was
the correct answer. Other criteria involved the use of standard NLP techniques,
such as Named Entity Recognition or Part-of-Speech tagging [218] to help
identify if a word is repeated between the question’s stem and correct answer.
The more challenging and advanced criteria, such as identifying if a question
contains implausible distractors, involved the use of LLMs. For instance, a
RoBERTa classifier pretrained on the Corpus of Linguistic Acceptability (CoLA)
was utilized to help identify ambiguous or unclear information in a question’s
stem [121]. To determine if a question contained more than one correct answer,
we leveraged GPT-4’s capabilities for question answering [175]. For a more
detailed explanation of the programmatically implemented 19 IWFs criteria, the
final code is made publicly available2, however the student question data is
currently private and can be made available upon request.

9.2.4 GPT-4 Evaluation
The second automatic evaluation method utilizes GPT-4, a transformer-based
multimodal model pre-trained to predict the next token in a document [175]. We
utilize GPT-4 as our second automated method as it has achieved human-level
performance on academic tasks, such as standardized college-level exams in

2 https://github.com/StevenJamesMoore/ECTEL23/blob/main/IWF.ipynb
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Psychology, History, and Math. It has also achieved state-of-the-art performance
on traditional machine learning benchmarks, such as the MMLU, which consists
of 57 tasks from a variety of domains that are used to demonstrate a model’s
extensive world knowledge and problem-solving ability [89]. What also makes
GPT-4 unique compared to many other language models, is the ability to follow
natural language prompts to perform specific tasks [135]. These prompts serve
as instructions for the model to perform, such as providing the model with a
rubric and multiple-choice question and then prompting it to apply the rubric
criteria to the question.

The exact wording of the prompts provided to GPT-4 can drastically
influence the output the model provides [127]. Towards this end, our task
involved providing GPT-4 with a single IWF rubric criteria at a time and having it
state if the provided question satisfied that given criteria or not. The names of
the criteria we used as well as their definitions are nearly identical to the ones
shown in Table 9.1. We opted to directly use the prompts rather than continually
engineering prompts to determine the best output. While we believe refinement
of the prompts is valuable future work, we wanted to see how well GPT-4 would
perform applying the same IWF rubric and giving it instructions akin to what
would be provided to a human evaluator. Specifically, the prompt we provided
GPT4 for each IWF rubric criteria and question states: Begin your response with
yes or no, does this multiple-choice question satisfy the criteria relating to
{criteria}: {definition}? Explain why. {question}. The rubric criteria, definition of the
criteria, and the multiple-choice question including all answer options are input
into the prompt respectively. Additionally, we utilized the default parameters of
the model and accessed it using the GPT-4 API via the Python programming
language.

Note, the prompt instructions also asked GPT-4 to provide an explanation as
to why a question satisfies or violates the criteria, which was done to encourage
a more thorough and accurate response from the model [103]. A human
evaluator went through each of the responses and coded them as GPT-4
indicating if the criteria was satisfied or violated. Although we had originally
intended to use a simple “Yes” or “No” response to indicate whether the criteria
were met, we found that this approach was not always clear in distinguishing
whether the criteria had been violated or satisfied.

9.3 Results
9.3.1 Automatic Methods versus Human Identification
The 19 IWF criteria were automatically applied to all 200 student-generated
questions, resulting in a total of 3800 classifications. The rule-based method
matched 90.87% of human classifications, achieving an exact match ratio of 15%,
where all of the 19 IWF criteria matched the human evaluation for the question.
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The GPT-4 method matched 78.89% of human classifications, achieving an exact
match ratio of 12%. We also considered the Hamming loss, which is a measure
of the difference between two sets of binary labels and calculated as the fraction
of labels that are incorrectly predicted [225]. The rule-based method achieved a
Hamming Loss of 0.09 and the GPT-4 method achieved a Hamming Loss of 0.21,
indicating that on average 9% and 21% of the flaws were misclassified
respectively. Table 9.2 displays the number of IWFs assigned to questions for
each evaluation method grouped by counts. A paired t-test showed a small
significant difference in the number of IWFs identified for each question by the
human (M = 1.6, SD = 1.3) and rule-based (M = 2.1, SD = 1.4) methods, t(199) =
5.59, p < .001. The rule-based evaluation method more commonly identified
potential flaws in the questions compared to the humans. Another paired t-test
showed a significant difference in the number of IWFs identified for each
question by the human (M = 1.6, SD = 1.3) and GPT-4 (M = 4.2, SD = 3.4) methods,
t(199) = 11.8, p < .001. The GPT-4 evaluation identified even more potential flaws
in the questions compared to both the human and rule-based methods. While the
human and rule-based methods never found more than six IWFs per question, the
GPT-4 method found up to thirteen

Number of
Flaws

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Human
Evaluation

39 72 42 28 9 6 2 0 0 0 0 0 0 0

Rule-based
Evaluation

23 49 56 34 27 8 1 0 0 0 0 0 0 0

GPT-4
Evaluation

30 23 25 24 13 17 7 19 11 11 9 7 1 1

Table 9.2: Counts of IWFs per question from all three evaluation methods

When the quality of the questions were labeled as acceptable (< 2 IWFs) or
unacceptable (≥ 2 IWFs), a chi-square test revealed there was a significant
relationship between the question quality and three evaluation methods, χ2(2,N =
200) = 36.64, p < .001. Between the three methods, GPT-4 was more likely to
evaluate a question as having unacceptable quality. The human evaluation
identified 111 acceptable and 89 unacceptable questions, while the rule-based
evaluation matched 130 (65%) of these (57 acceptable, 73 unacceptable). The
GPT-4 evaluation matched 123 (62%) of the human quality evaluations (44
acceptable, 79 unacceptable). Figure 9.1 shows the confusion matrices for the
quality classifications based on the number of IWFs found in each question
between the human and rule-based evaluation and the human and GPT-4
evaluation.
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Figure 9.1: Confusion matrices for the classification of a question’s quality for
the rule-based method (left) and the GPT-4 method (right)

9.3.2 Impact of the Domain
The automatic evaluation methods, rule-based and GPT-4, performed differently
across criteria and domains, with the rule-based method outperforming GPT-4 on
all four domains. Table 9.3 shows the performance of all three evaluation
methods across all four domains. Between the datasets, we use F1 scores to
evaluate success. Since a majority of the questions meet the criteria rather than
violate them, the F1 score provides a better measure over accuracy, as it includes
false negatives and false positives. From Table 9.3, we observe that the
rule-based and GPT-4 methods commonly matched human evaluation for some
criteria, such as none of the above and negative worded, and performed poorly for
other criteria, such as logical cues and more than one correct. In particular, the
rule-based method achieves high F1 scores for longest option correct and
true/false question compared to GPT-4. Note, the rules for these two criteria can
be easily implemented programmatically, as they only check for text length and
keywords.

Both the rule-based and GPT-4 methods have a lower micro-average F1
score, the computed proportion of correctly classified observations out of all
observations, for the Chemistry and Biochemistry courses compared to Statistics
and CollabU. This may be in part due to the similar domains of these science
courses, where the human evaluators focused more on the objective of the
questions, rather than the grammar, while the automated methods did not.
Additionally, some of the poor performance related to F1 scores is due to the
small number of that flaw being found in the questions. For instance, gratuitous
information and vague terms have poor performance by F1 score, but those flaws
are quite rare across all four courses. Ultimately, the rule-based method
outperformed GPT-4, by measure of micro-average F1 score, across all four
domains.

Item-Writing Flaws Chemistry Biochemistry Statistics CollabU
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Hum Rule GPT Hum Rule GPT Hum Rule GPT Hum Rule GPT
ambiguous
information

N 12 2 11 7 4 25 14 11 25 7 7 40
F1 - 0.14 0.61 - 0.00 0.25 - 0.40 0.41 - 0.29 0.30

implausible
distractors

N 10 6 17 3 9 16 8 9 17 25 21 29
F1 - 0.12 0.30 - 0.33 0.11 - 0.82 0.16 - 0.83 0.78

none of the
above

N 7 8 6 3 3 3 1 1 1 1 1 1
F1 - 0.80 0.62 - 1.00 0.67 - 1.00 0.00 - 1.00 1.00

longest
option
correct

N 5 5 6 2 2 11 3 3 6 9 10 13

F1 - 0.80 0.18 - 1.00 0.00 - 1.00 0.44 - 0.95 0.36

gratuitous
information

N 0 0 2 7 5 25 3 0 18 0 0 19
F1 - - 0.00 - 0.67 0.38 - 0.00 0.29 - - 0.00

true/false
question

N 2 3 1 6 11 11 1 1 3 3 3 4
F1 - 0.80 0.67 - 0.59 0.24 - 1.00 0.00 - 1.00 0.29

convergence
cues

N 2 12 12 12 36 13 9 11 18 10 16 16
F1 - 0.14 0.14 - 0.50 0.24 - 0.80 0.30 - 0.77 0.23

logical
cues

N 2 2 9 2 6 15 3 1 18 10 0 23

F1 - 0.00 0.00 - 0.00 0.00 - 0.00 0.10 - 0.00 0.36

all of the
above

N 2 0 1 3 0 2 1 0 1 2 1 3
F1 - 0.00 0.67 - 0.00 0.80 - 0.00 1.00 - 0.67 0.80

fill-in-
the-blank

N 2 2 3 4 3 2 0 0 0 1 1 4
F1 - 1.00 0.00 - 0.86 0.67 - - - - 1.00 0.40

absolute
terms

N 2 6 1 6 19 9 0 2 1 7 10 6
F1 - 0.00 0.00 - 0.40 0.27 - 0.00 0.00 - 0.71 0.62

word
repeats

N 0 0 2 8 0 7 0 0 6 3 2 5

F1 - - 0.00 - 0.00 0.13 - - 0.00 - 0.00 0.25

unfocused
stem

N 0 2 7 5 4 15 7 3 17 4 4 28
F1 - 0.00 0.00 - 0.44 0.30 - 0.40 0.50 - 0.75 0.25

complex or
K-type

N 2 0 6 6 9 6 3 2 14 1 1 27
f1 - 0.00 0.25 - 0.53 0.50 - 0.80 0.24 - 1.00 0.07

grammatical
cues

N 1 3 17 13 24 14 5 13 20 11 18 36
F1 - 0.00 0.11 - 0.65 0.30 - 0.44 0.32 - 0.76 0.38

lost
sequence

N 0 2 12 2 0 12 11 11 17 0 0 7

F1 - 0.00 0.00 - 0.00 0.29 - 0.91 0.43 - - 0.00

vague
terms

N 0 0 0 2 0 4 0 0 3 0 0 10

F1 - - - - 0.00 0.00 - - 0.00 - - 0.00

more than
one correct

N 0 13 5 0 4 14 0 20 16 4 10 22
F1 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.43 0.15

negative
worded

N 0 0 0 8 14 15 2 3 2 6 7 6
F1 - - - - 0.64 0.70 - 0.80 1.00 - 0.92 1.00

micro-avg - 0.30 0.25 - 0.48 0.28 - 0.56 0.30 - 0.70 0.36

totals 49 66 118 99 149 219 71 91 203 104 112 299

Table 9.3: The count of flaws (N) and performance (F1) of the human evaluation
(Hum) compared to both the rule-based (Rule) and GPT-4 (GPT) methods across
all four domains. A dash (-) in the table indicates that the flaw was not present in
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any question of that dataset based on human evaluation and therefore no F1
score is computed

9.3.3 Common Item-Writing Flaws
The most frequently identified violated criteria varied across the three methods,
although in some domains the rule-based and GPT-4 methods had similar
classifications to the human evaluation. Table 9.3 shows that the implausible
distractor criteria was violated the most across all questions in human
evaluation, whereas vague terms was the least violated. On the other hand, the
rule-based method found convergence cues to be the most commonly violated
criteria and vague terms to also be the least violated. As for the GPT-4 method,
the most commonly violated criteria was ambiguous unclear information, and all
of the above was the least violated. Although the most frequently violated criteria
varied across all three methods, the rule-based and GPT-4 methods shared
similar results with human evaluation. Specifically, the rule-based method’s most
violated criteria ranked as the third most violated criteria in human evaluation,
while the GPT-4 method’s most violated criteria ranked second.

A Pearson correlation coefficient showed there was a significant positive
correlation between the number of flaws identified for each criteria between the
rule-based and human evaluations for Biochemistry (r(17) = .747, p < .001),
Statistics (r(17) = .496, p < .05), and CollabU (r(17) = .833, p < .001). However, this
correlation was not found to be significant for Chemistry (r(17) = .191, p = .433).
A Pearson correlation coefficient was also computed for the number of flaws
identified for each criteria between the GPT-4 and human evaluations. There was
a significant positive correlation found for Statistics (r(17) = .756, p < .001), and
CollabU (r(17) = .4702, p < .05). No significant correlation was found for
Chemistry (r(17) = .443, p = .057) and Biochemistry (r(17) = .262, p = .278). This
suggests that for Statistics and CollabU, both automated methods identified
similar trends in the violated criteria – i.e., if a flaw was commonly found by
human evaluation, it was also likely to be commonly found by the automated
methods.

9.4 Discussion
In this work, we developed an automatic rule-based method and assessed its
performance compared to GPT-4 and human annotation for evaluating the quality
of educational MCQs using the IWF rubric. In contrast to prior research, we
employed criteria that pertain directly to the pedagogical value of the question
across multiple dimensions. We found that this method can perform at a level
comparable to human evaluation for certain rubric criteria and outperforms
GPT-4 in the same task across all rubric criteria. The rule-based method was
effective in evaluating questions across four distinct subject areas, even with the

114



presence of domain-specific jargon. When comparing the results of our
automatic evaluation methods to human evaluation, we identified commonly
found IWFs in student-generated questions across the four subject areas. Our
results suggest that using a rule-based multi-label classification method can
achieve a high level of accuracy while also maintaining interpretability, which the
GPT-4 method lacks.

Both of the automatic methods’ classifications were stricter, in the sense
that they assigned many more IWFs to the student-generated questions than
human experts, particularly GPT-4. However, this is preferable to being less strict,
as guaranteeing high-quality questions during the evaluation process is crucial so
as to not disrupt student learning. Additionally, both of the automatic methods
could easily help filter out questions whose quality is too low for human review,
e.g., if a question has four or more IWFs, it would likely take substantial time to
review and could be dropped. This filtering capability of the rule-based method is
supported by our results showing that it matches 65% of human classification
when categorizing questions as acceptable or unacceptable, based on the IWF
count. This method of binary classification of quality is commonly used in MCQ
evaluation and has a performance level comparable to other models using
similar educational datasets [174, 195]. Additionally, these automatic methods
could be identifying criteria that were missed by the human evaluators, rather
than misclassifying questions with the IWF rubric criteria.

While GPT-4’s training data included material from the four course domains
used in this study, its black-box nature poses challenges in interpreting why it
might be misclassifying specific IWF criteria [175]. For instance, the GPT-4
method achieves extremely low F1 scores for gratuitous information, unfocused
stem, and vague terms, all of which relate to the question’s stem being
unnecessarily verbose. Our analysis revealed that GPT-4 identifies a significantly
high number of these three flaws across questions in each domain compared to
the human and rule-based methods. This could mean that GPT-4 is mistakenly
combining these criteria due to their similarity, marking them all as violated
based on a single flaw. In contrast, the rule-based method can be designed to
implement each criteria explicitly without overlapping with other flaws.

Across the four different subject areas utilized in this study, we found that
both the rule-based and GPT-4 methods performed better on Statistics and
CollabU, compared to Chemistry and Biochemistry. This may be in part due to the
latter two domains containing questions that use more terminologies and jargon,
making some of the NLP techniques less effective [47]. Interestingly, the
rule-based method achieved more than double the micro-average F1 score of the
GPT-4 method in CollabU. GPT-4’s worse performance in this case may be due to
proper nouns being included in the question text. The human evaluators familiar
with the course content would find the usage of the proper nouns acceptable and
the rule-based method does not leverage proper nouns in many of the criteria.
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However, GPT-4 may identify these as errors in the question as it lacks the
necessary context to know if they are essential to the question or not.

Compared to the other course domains, CollabU, a course on learning how to
effectively collaborate, may have more recall-level student-generated questions.
In contrast, the other domains may include more complex questions that involve
formulas or numbers that are challenging to decipher for the automatic methods.
Criteria such as lost sequence are also more applicable to domains such as
Chemistry or Statistics as they may include question options that are purely
numerical, causing the arrangement of options to matter. Additionally, both
automatic methods performed the worst in Chemistry and Biochemistry, two
closely related science courses. IWF criteria such as grammatical cues and
convergence cues were excessively identified by both methods compared to the
human evaluators. With the subjectivity that arises from human evaluation, even
when applying a standardized rubric, it is possible the evaluators were less
focused on grammar in this domain and more focused on the objective of the
question, prioritizing what was being asked more than how it was being asked.
This highlights the need for automatic evaluation methods that can focus on
both the syntax and the question’s content that is critical to the domain and
pedagogy. In contrast to human evaluation, automatic methods scale easier,
reduce human subjectivity leading to enhanced replicability, and can be used by
individuals without domain expertise.

Finally, the rule-based method demonstrated effectiveness in identifying
IWFs that are common in accordance with human evaluation in each of the
datasets analyzed. In line with previous research, ambiguous or unclear
information and implausible distractors were two of the most identified flaws
across all questions by the human, rule-based, and GPT-4 methods [196, 221].
Our analysis revealed that 50% of the questions in the CollabU dataset exhibited
the implausible distractors flaw. Again, this may be attributed to the recall-based
nature of the material in this domain, which could make it challenging for
students to generate plausible alternative options for the questions. In contrast
to [196, 221], our datasets contained a high percentage of questions with the
convergence cues flaw. This might be a result of the digital interface that
students used to construct MCQs in our study, as it might have encouraged them
to copy the correct answer and then modify it, leading to the prevalence of this
flaw. In turn, these findings can inform teachers of the common flaws that they
should focus on when refining student-generated MCQs and providing them with
feedback on the task.

We expected both automatic methods to perform highly on the IWF criteria
more than one correct, as they both leverage GPT-4, which has achieved success
in these course domains [175]. However, the presence of different flaws, such as
incorrect grammar or the inclusion of proper nouns, may cause the question to
be confusing, potentially misleading GPT-4 into incorrectly answering some of
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the questions. Additionally, while criteria such as none of the above and
fill-in-the-blank might initially appear to be easy to achieve near perfect accuracy
on, they can give both the rule-based and GPT-4 methods difficulty. For instance,
the rule-based method, which uses keyword matching, might not properly detect
none of the above if there is a spelling mistake or if there are extra words
amongst the given option. Similarly, GPT-4 was often overzealous at detecting
these flaws, as at times it interpreted different answer options as effectively
containing text akin to none of the above, despite it not explicitly being an option.

9.5 Limitations & Future Work
We identified several limitations to our study that may be addressed in future
research. First, our study relies on several datasets of student-generated
questions, whose quality may vary by the subject area and individual students.
Analyzing educational MCQs from other domains that contain a different variety
of flaws could lead to more holistic and generalizable findings. It should be noted
that the classification of questions in our study is inherently subjective due to the
nature of human evaluation. To mitigate this, we employed a standardized IWF
rubric and achieved a high inter-rater reliability (IRR) for each criteria. However, it
is possible that different evaluators may arrive at different results. The code
implementation used to identify the item-writing flaws could be adjusted to
achieve different results. For example, variations in threshold for cosine
similarity, utilizing an alternative implementation of a method from a different
library, or rewording the GPT-4 prompts could affect the outcome.

Finally, the use of GPT-4 poses challenges with replicability, despite providing
the prompts and default hyperparameters used in this research. One challenge is
that the output of GPT-4 still requires human evaluation to interpret and verify
what the model intended, as even when it is prompted for specific phrasing, it
may still respond in a conflating manner. Another related challenge is that the
model is both inherently random to some degree and still under development,
meaning at a future point in time it might perform differently given the same
tasks as this research. In order to promote transparency and reproducibility of
our research, we have open-sourced our code. This allows for full visibility into
the logic used for classifying each item-writing flaw and maintains interpretability
so that other researchers can easily make any desired modifications. A promising
future direction of this work is to both improve the classification accuracy of
these flaws and extend the automatic methods to also provide suggestions for
addressing the identified flaws.While GPT-4 may have not been as accurate as
the rule-based method for identifying the flaws, it can provide explanations and
suggest improvements to the questions.
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9.6 Conclusion
In this paper, we proposed a novel rule-based method for automatically
evaluating the quality of educational multiple-choice questions using criteria
from the Item-Writing Flaws rubric. The results indicate that the rule-based
method accurately assesses the quality of student-generated questions across
multiple distinct subject areas and highlights the occurrence of different flaws in
questions across these domains. It outperforms GPT-4 in applying the
Item-Writing Flaws rubric across all four domains when compared to human
evaluation. Both automated methods demonstrate how certain flaws may be
easier or harder to identify, depending on the subject area. We contribute a
categorization and comparison of item-writing flaws found in student-generated
questions across four different subject areas. These results provide a valuable
baseline performance measure for future research. This work also opens further
opportunities for developing open and interpretable methods for evaluating
educational questions by pedagogical values.
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Chapter 10
Positing a New Method for Educational

Question Evaluation

10.1 Introduction
Multiple-choice questions (MCQs) are the most commonly utilized assessment
format across educational settings, spanning both traditional classroom
environments and digital e-learning platforms [66]. Their versatility allows for
assessing a broad spectrum of learning outcomes, ranging from simple recall to
complex analytical skills, in many learning domains [152]. Besides offering
grading efficiency and objectivity, MCQs enable the targeting of specific
misconceptions through carefully crafted alternative answer options, known as
distractors. However, the development of high-quality MCQs demands a rigorous
approach to ensure reliability, validity, and fairness, essential for accurately
measuring learners’ knowledge and competencies [207].

Recent advances in natural language processing (NLP) have sought to
alleviate the burden and time-consuming nature of MCQ authoring, enabling the
rapid generation of questions at scale. These technologies facilitate the
generation of hundreds of MCQs within minutes from sources such as document
files or direct text requests [141]. Despite these advances, the rise in
machine-generated MCQs has not uniformly translated to an improvement in
quality. Machine-generated questions produced by state-of-the-art large language
models (LLMs) often mirror the inaccuracies commonly found in human
generated questions [74]. Such methods raise concerns regarding trust,
authenticity, and diversity, potentially leading educators to be hesitant about
adopting them without comprehensive evaluation [103].

Among the various MCQ evaluation techniques proposed in the literature,
human judgment remains the gold standard, but typically faces challenges with
subjectivity, time efficiency, and scalability [170]. Commonly used NLP metrics
such as BLEU or METEOR, on the other hand, are much more efficient and
scalable, but tend to focus on superficial features like readability and fail to align
with human assessments or evaluate the pedagogical value of MCQs [125]. The
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effectiveness of MCQs are only as good as their design, requiring rigorous
evaluation to ensure they serve as effective tools for assessing learning.

To address this gap, our research aims to establish a standardized and
rigorous automated technique for MCQ evaluation. We begin by demonstrating
the limitations of current NLP-based evaluation metrics, highlighting their lack of
correlation with common errors found in MCQs. Then we introduce an automated
evaluation technique, Scalable Automatic Question Usability Evaluation Toolkit
(SAQUET), designed for comprehensive and standardized quality assessment of
MCQs across multiple domains. Leveraging the 19 criteria of the Item-Writing
Flaws (IWF) rubric [221], a proven and standardized instrument, SAQUET
evaluates the structural and pedagogical quality of MCQs. We evaluate SAQUET
across two datasets encompassing 271 MCQs from five diverse fields:
Chemistry, Statistics, Computer Science, Humanities, and Healthcare.

The primary contributions of our work include: (1) providing empirical
evidence on the inadequacy of prevalent MCQ quality evaluation metrics; (2)
introducing SAQUET, an open-source tool capable of domain agnostic MCQ
evaluation; and (3) compiling the most extensive and varied open dataset of
MCQs annotated with IWF, providing opportunity for future research in
educational assessment.

10.2 Methods
10.2.1 Item-Writing Flaws (IWF) Rubric
In our study, we adopted the 19-criteria IWF rubric, a tool that has been validated
and employed in prior research [51, 160, 184, 221]. The rubric is designed to be
universally applicable across domains, encompassing both pedagogical
considerations and factors related to human test-taking abilities. Unlike
traditional metrics that primarily assess readability, the IWF rubric includes
criteria that address a broader range of question quality aspects, such as
unintentional hints, cues, and modality. Table 10.1 outlines each of the 19 criteria,
providing guidance on avoiding specific flaws and ensuring adherence to the
rubric’s standards. Previous research indicates an MCQ with zero or one IWF can
generally be considered acceptable for use, particularly in contexts such as
formative assessments [221]. Conversely, an MCQ that exhibits two or more
IWFs is classified as unacceptable for use. However, instructors might prioritize
avoiding specific IWFs based on their use cases to align best with their learning
objectives.

10.2.2 Technical Overview of SAQUET
Previous efforts to automate the application of the IWF rubric have explored two
main strategies, using either a rule-based approach or the well-known GPT-4
model [160]. The rule-based approach demonstrated superior performance to the
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GPT-4-based method for most criteria across all domains used in the previous
study. Building upon these findings, this current work enhances the rule-based
methodology by integrating advanced methods and incorporating selective GPT-4
interventions. One of our primary objectives was not only to improve the quality
of criteria classifications, but also to preserve the tool’s ability to be applied
across various domains, ensuring scalability and rapid processing for a large
volume of MCQs. The automatic detection of the 19 IWF criteria outlined in Table
10.1 falls into three distinct categories: text-matching techniques, NLP-based
information extraction, and enhancements provided by GPT-4.

Item-Writing Flaw An Item Is Flawed If…
Longest Option
Correct

The correct option is longer and includes more detailed
information than the other distractors, as this clues
students to this option

Ambiguous
Information

The question text or any of the options are written in an
unclear way that includes ambiguous language

Implausible
Distractors

Any included distractors are implausible, as good items
depend on having effective distractors

True or False The options are a series of true/false statements

Absolute Terms It contains he use of absolute terms (e.g. never, always,
all) in the question text or options

Complex or K-type It contains a range of correct responses that ask
students to select from a number of possible
combinations of the responses

Negatively Worded The question text is negatively worded, as it is less
likely to measure important learning outcomes and can
confuse students

Convergence Cues Convergence cues are present in the options, where
there are different combinations of multiple
components to the answer

Lost Sequence The options are not arranged in chronological or
numerical order

Unfocused Stem The stem is not a clear and focused question that can
be understood and answered without looking at the
options

None of the Above One of the options is “none of the above”, as it only
really measures students ability to detect incorrect
answers

Word Repeats The question text and correct response contain words
only repeated between the two

More Than One
Correct

There is not a single best-answer, as questions should
have 1, and only 1, best answer
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Logical Cues It contains clues in the stem and the correct option that
can help the test-wise student to identify the correct
option

All of the Above One of the options is “all of the above”, as students can
guess correct responses based on partial information

Fill in the Blank The question text omits words in the middle of the
stem that students must insert from the options
provided

Vague Terms It uses vague terms (e.g. frequently, occasionally) in the
options, as there is seldom agreement on their actual
meaning

Grammatical Cues All options are not grammatically consistent with the
stem, as they should be parallel in style and form

Gratuitous
Information

It contains unnecessary information in the stem that is
not required to answer the question

Table 10.1: The 19 Item-Writing Flaw rubric criteria used in this study.

The first category includes eight criteria: None of the Above, All of the Above,
Fill-In-The-Blank, True or False, Longest Answer Correct, Negative Worded, Lost
Sequence, and Vague Terms. Given the nature of these criteria, foundational
programming techniques like string matching are primarily used for
identification. However, to enhance accuracy we implemented several
modifications, such as adjusting threshold parameters, incorporating checks for
various question formats, expanding the list of keywords for matching, and
lemmatizing the text to normalize word forms. For example, the True or False
criteria underwent significant alterations to accommodate Yes/No questions.
The Fill-In-The-Blank criteria required adjustments to avoid misclassification of
Computer Science MCQs, which often use the underscore character.
Improvements like refined pattern matching were applied to the Lost Sequence
criteria, enabling the detection of cases not identified in the initial dataset.

The second category encompasses five criteria: Implausible Distractors,
Word Repeats, Logical Cues, Ambiguous or Unclear, and Grammatical Cues. These
criteria are addressed using foundational NLP techniques, including word
embeddings, Named Entity Recognition (NER), and Transformer models like
RoBERTa [170]. NER plays a pivotal role in analyzingWord Repeats, Logical Cues,
and Grammatical Cues by allowing us to identify and compare nouns and verbs
used in the MCQ. This approach enhances our ability to detect grammatical
consistency, identify repeated words, and recognize synonyms. For tackling
Ambiguous Information and Implausible Distractors, our attempts to incorporate
GPT-4 faced challenges, as its outputs were often excessively critical, leading to
a high rate of misclassifications. To address this, we instead integrated
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additional linguistic metrics, such as query well-formedness scores [8], and
leveraged updated word embeddings to refine the evaluation.

The final category includes six criteria: Absolute Terms, More Than One
Correct, Complex or K-Type, Gratuitous Information, Unfocused Stem, and
Convergence Cues. This category utilizes NLP techniques similar to the previous
ones, enhanced by the integration of GPT-4 API calls for additional verification.
For example, simple word matching was insufficient for the Absolute Terms
criteria, as the context in which terms like “impossible” are used needs further
analysis by GPT-4 to determine their impact on answer validity. Modifications
were applied to the Convergence Cues and Complex or K-Type criteria,
incorporating GPT-4 for final verification check to improve accuracy. The criteria
Unfocused Stem and Gratuitous Information, both of which involve lexical
richness [122], benefited from GPT-4 interventions, significantly reducing false
positives detected in pilot tests by better evaluating question stems for learner
comprehension. Finally, the More Than One Correct criteria was enhanced to not
only attempt at answering questions but also to discern whether a question
allows for multiple correct responses or is a select-all-that-apply type. We have
open-sourced the code and datasets used in this work3.

10.2.3 Datasets
We utilized two datasets of MCQs previously tagged with the IWF criteria to
evaluate SAQUET. The first dataset, derived from [51], encompasses MCQs in
Computer Science, Humanities, and Healthcare, sourced from prominent MOOC
platforms, such as Coursera and edX. The second dataset, from [160], contains
student-generated MCQs from Chemistry and Statistics courses. Both datasets
contained MCQs with two to five answer choices each. Additionally, both
datasets were evaluated by two human experts, with past studies reporting high
inter-rater reliability via Kappa scores. Due to IRB permissions and formatting
challenges, not all questions from these initial datasets were included in our
present study. Additionally, we made minor corrections to address errors in the
datasets, such as mislabeled criteria. For example, one adjustment involved
reevaluating Computer Science, Humanities, and Healthcare questions to ensure
True/False questions were not mistakenly flagged under the Longest Option
Correct criteria, particularly when “False” was the correct answer.

For developing SAQUET, we initially used a subset of 25 questions, 5 from
each domain, which were not included in the final evaluation dataset. Our final
dataset comprised 271 MCQs across the five domains, all tagged with the 19 IWF
criteria, offering a varied pool of questions for analysis. This contrasts with
previous IWF research, which often focuses on a single domain [184, 221].

3 https://github.com/StevenJamesMoore/AIED24
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10.2.4 Evaluation
To evaluate the effectiveness of commonly employed automated techniques for
assessing question quality, we applied five popular linguistic quality metrics to
the 271 MCQs in our dataset: perplexity, diversity, grammatical error, complexity,
and answerability. Perplexity scores were generated using a GPT-2 language
model, aligning with methodologies from recent research [230]. We measured
diversity through the Distinct-3 score, which quantifies the average number of
unique 3-g per MCQ [129]. Grammatical errors were identified using the widely
recognized Python Language Tool [169], tallying the grammatical inaccuracies in
each question as done in prior research [189]. For complexity assessment, we
adopted Bloom’s Revised Taxonomy, assigning each MCQ a level from 0 (lowest,
‘remember’) to 5 (highest, ‘create’), which serves as a common indicator of
complexity and difficulty [122, 152]. A highly precise classifier was employed to
automatically determine the Bloom’s level for each question [66]. Answerability
was evaluated using GPT-4, employing the strategy of the Prompting-based
Metric on ANswerability (PMAN) approach [228]. This involved following the
strategy of crafting specific prompts that instructed GPT-4 to choose an answer
for each MCQ.

For the evaluation of SAQUET, we referenced gold standard human
evaluations for our dataset. The overall match rate between our method and the
human evaluations is calculated to reflect the general accuracy of our tool in
classifying MCQs according to the IWF criteria. To tackle this multi-label
classification challenge, we use the exact match ratio, necessitating correct
identification of all labels for a match, and Hamming Loss, which calculates the
average proportion of incorrect labels, offering detailed insights into our
classification’s accuracy on a holistic level [80]. We further assess performance
using the F1 score of each criteria, which balances precision (the accuracy of
positive predictions) and recall (the completeness of positive predictions) . A
high F1 score indicates both high precision and high recall, signifying effective
identification of an IWF without excessive false positives or negatives. The
micro-averaged F1 score aggregates outcomes across all criteria, offering a
consolidated view of performance for the entire dataset [132]. Analysis is
conducted not just on the aggregate dataset, but also segmented by domain.
This allows us to identify domain-specific performance variations and areas for
refinement. Where possible, we compare our results with metrics reported in
prior studies using similar datasets and evaluation metrics, providing context for
SAQUET’s performance [51, 160].
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10.3 Results
10.3.1 Limitations of Traditional Metrics in Evaluating
Educational MCQs
For each of the five domains, we categorized the MCQs into two groups: one
group includes MCQs with zero or one IWF and the other comprises MCQs with
two or more. This classification helps differentiate between questions that are
considered acceptable (zero or one IWF) and those deemed unacceptable (two
or more IWF), thereby allowing for a more precise analysis given the constraints
of our dataset in accordance with previous research [160, 221]. We then
assessed these questions using five linguistic quality evaluation metrics, as
detailed in Table 10.2. Our analysis revealed that, across all metrics, the
performance of MCQs in each domain either matched or exceeded ones found in
recent research. For comparison, [35] reported that human generated MCQs,
based on Wikipedia articles and science textbooks, had average perplexity
scores of 18 to 84 and diversity scores between .78 and .82. Similarly, [189]
determined that the average answerability score for human generated MCQs, on
the topic of middle and high school reading comprehension, was .726.

Domain IWF N Perplexity ↓ Diversity ↑ Grammatical
Error ↓

Cognitive
Complexity ↑

Answerability ↑

Chemistry 0-1 35 47.65 0.961 0.400 0.057 0.743
2+ 15 57.46 0.962(^) 0.333(^) 0.133(^) 0.733

Statistics 0-1 32 46.02 0.928 0.375 0.719 0.531
2+ 18 27.51(^) 0.888 0.444 1.333(^) 0.611(^)

Computer
Science

0-1 62 30.73 0.927 2.129 1.145 0.806
2+ 38 41.56 0.917 3.605 1.500(^) 0.605

Humanities 0-1 18 47.64 0.955 0.375 1.313 0.875
2+ 6 28.24(^) 0.939 0.375 1.250 1.000(^)

Healthcare 0-1 25 30.25 0.955 0.400 1.200 0.960
2+ 22 27.72(^) 0.957(^) 0.182(^) 1.682(^) 0.909

Table 10.2: Comparison of five common evaluation metrics for question quality
across five domains, categorized by IWF Count. A circumflex (^) denotes a

superior score achieved by questions with a higher IWF count in each metric.

Our analysis revealed that student-generated questions in the Chemistry and
Statistics domains had relatively high perplexity scores, but in Statistics,
questions with 2+ IWFs exhibited a lower perplexity. The diversity metric revealed
a ceiling effect, where variations are minimal across different question sets from
all domains. High diversity scores are expected, as the MCQs were sourced from
diverse origins and authors, such as MOOCs or digital textbooks. The impact of
IWFs on a question’s answerability varied, where in some cases the presence of
IWFs did not reduce, and might have even enhanced, the likelihood of the LLM to
correctly answer the questions.
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Grammatical errors were relatively low across all domains except Computer
Science, where the code syntax posed unique challenges for this criteria,
contributing to higher error rates [66]. Interestingly, in both Chemistry and
Healthcare, questions with more IWFs (2+) showed a lower average number of
grammatical errors, suggesting a nuanced relationship between IWF count and
grammatical precision. Initially we expected questions with fewer IWF would
have fewer grammatical mistakes, but those may have been overlooked by the
human evaluators. Cognitive complexity, measured by Bloom’s Revised
Taxonomy levels, was also generally higher for questions with 2+ IWFs across all
domains except for Humanities, where the difference was marginal, indicating
these questions with more flaws tend to engage higher-order cognitive skills.

These findings demonstrate the potential for commonly used metrics to
paint an overly optimistic picture of question quality. Even questions with
multiple flaws can score well on perplexity, diversity, and grammatical precision,
suggesting they are well crafted and clear. However, this can be misleading, as
these metrics may not capture deeper issues such as false information, incorrect
assumptions, or inaccuracies in content. For example, Figure 10.1 shows a
question that achieved an acceptable evaluation across all five metrics, yet it is
clearly a poorly student generated question that contains three IWFs: implausible
distractors, logical cues, and grammatical cues.

Figure 10.1: A student generated MCQ from the Chemistry dataset consisting of
three IWFs on the left, with the associated linguistic quality evaluation metrics on

the right.

10.3.2 Performance of Automated IWF Classification Across
Domains
The 19 IWF criteria were automatically applied to all 271 MCQs for a total of
5,149 classifications. While the overall accuracy is slightly skewed due to most of
the questions containing a few flaws and thus being classified as 0 for a given
criteria, the total accuracy was 94.13%, which treats each criteria classification
individually. We achieved an exact match ratio of 38%, which indicates that 103
of the questions were evaluated the same across all 19 criteria between SAQUET
and the different human evaluators. The Hamming Loss was 5.9%, indicating a
small amount of misclassification regarding the flaws. While we only used half of
the data from [160] consisting of 100 MCQs, it is our closest comparable. As
such, compared to their leading rule-based method, we achieved a 3.26% overall

126



classification accuracy improvement, a 13% higher exact match ratio, and 3.1%
lower Hamming Loss.

On average, SAQUET (M=1.75, SD=1.26) was more likely to classify a MCQ as
having more IWFs compared to the human evaluators (M=1.31, SD=1.11). The
most IWFs assigned to a single question by both was 5. In Table 10.3, we present
the IWF classifications from the human evaluators compared to SAQUET for all
five domains.

Item-Writing
Flaws

Chemistry
(50)

Statistics
(50)

Computer
Science (100)

Humanities
(24)

Healthcare
(47)

Hum SAQ Hum SAQ Hum SAQ Hum SAQ Hum SAQ
Longest Option
Correct

N 5 8 3 7 27 27 8 8 16 15
F1 0.77 0.60 0.96 1.00 0.97

Ambiguous
Information

N 12 12 14 18 12 21 0 2 2 0
F1 0.58 0.50 0.24 0.00 0.00

Implausible Distractors N 9 8 8 6 3 15 3 7 8 3
F1 0.24 0.86 0.33 0.20 0.00

True or
False

N 2 2 1 0 9 10 4 4 11 11
F1 1.00 0.00 0.95 1.00 1.00

Absolute Terms N 2 1 0 1 9 6 9 9 5 4
F1 0.67 0.00 0.40 0.89 0.44

Complex or K-type N 2 4 4 8 15 12 0 1 4 5
F1 0.67 0.67 0.81 0.00 0.89

Negatively Worded N 0 0 2 4 10 14 0 1 11 11
F1 - 0.67 0.83 0.00 0.91

Convergence Cues N 2 3 9 7 7 11 0 0 1 4
F1 0.00 0.63 0.44 - 0.00

Lost
Sequence

N 3 3 14 15 2 2 0 0 0 0
F1 1.00 0.97 0.50 - -

Unfocused Stem N 0 1 8 10 8 5 0 0 0 0
F1 0.00 0.89 0.62 - -

None of the Above N 6 5 1 1 6 6 0 0 0 0
F1 0.91 1.00 1.00 - -

Word
Repeats

N 1 1 1 1 7 11 0 0 4 11
F1 1.00 1.00 0.56 - 0.53

More Than One
Correct

N 0 2 0 11 8 24 3 10 1 17
F1 0.00 0.00 0.38 0.46 0.11

Logical
Cues

N 4 3 2 1 2 8 0 0 0 1
F1 0.29 0.67 0.00 - 0.00

All of the Above N 1 1 1 1 2 2 0 0 2 3
F1 1.00 1.00 1.00 - 0.80

Fill in the Blank N 2 2 0 0 2 2 0 0 2 2
F1 1.00 - 1.00 - 1.00

Vague
Terms

N 0 0 0 1 3 2 0 1 3 3
F1 - 0.00 0.80 0.00 1.00

Grammatical Cues N 2 1 3 1 0 1 0 1 0 1
F1 0.67 0.00 0.00 0.00 0.00

Gratuitous Information N 0 2 3 5 0 3 0 2 0 0
F1 0.00 0.50 0.00 0.00 -

Micro-Averaged F1 0.59 0.65 0.62 0.66 0.67
IWF totals 53 59 74 98 132 182 27 46 70 91

Table 10.3: The number of identified flaws (N) and F1 performance scores for
human evaluations (Hum) versus SAQUET (SAQ) across the five domains. A dash

127



(-) signifies the absence of a flaw in a domain as determined by human
evaluation, precluding F1 score calculation.

The F1 scores reveal the effectiveness of SAQUET across the five domains for
each criterion. Compared to the rule-based implementation in [160], our approach
improved the F1 score across multiple criteria for Chemistry and Statistics
questions. Performance on the None of the Above criteria was notably strong, as
reflected by high F1 scores, indicating precise classification with minimal
misclassifications. Other criteria, such asMore Than One Correct, showed subpar
performance across all domains, with frequent incorrect classifications and often
overestimating its presence. The micro-averaged F1 scores provide a
consolidated view of SAQUET’s accuracy across all 19 criteria and allow for a
domain-wise comparison of classification efficacy.

Taking the categorization of all MCQs as acceptable (zero or one IWF) or
unacceptable (two or more IWF), we compared the SAQUET’s classifications with
those made by human evaluators. This comparison aimed to see if the overall
categorization matched, despite potential misclassifications of specific IWF
criteria. Figure 10.2 presents a confusion matrix for this acceptability
classification, indicating human evaluators deemed 168 questions acceptable
and 103 questions unacceptable. SAQUET matched 204 of these MCQ
categorizations, with 112 classified as acceptable and 92 as unacceptable,
achieving a 75.3% match rate with human evaluations.

Figure 10.2: A confusion matrix for the categorization of questions as acceptable
or unacceptable based on their IWF by the human evaluation and SAQUET.

10.4 Discussion
Our results demonstrate that traditional metrics used for assessing the quality of
questions, especially multiple-choice, might not adequately reflect their true
quality. We observed that questions with various errors, indicated by Item-Writing
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Flaws, which could either simplify the answering process for students or lead to
confusion, often receive high scores from commonly used linguistic quality
metrics. To address this gap, we introduced SAQUET, a method designed to
capture these more complex aspects of question quality while remaining
automated and scalable. By benchmarking against human expert evaluations, we
show that SAQUET has the potential to provide a more precise and detailed
assessment of question quality compared to these linguistic quality metrics.
Furthermore, our contribution to the field of assessment quality evaluation
research extends to making both SAQUET and our comprehensive dataset
publicly available3.

Recent efforts in NLP have aimed to shift away from traditional readability
metrics like BLEU, METEOR, or ROGUE when evaluating the quality of MCQs, yet
these metrics continue to be employed in recent works [25, 35, 170]. In our study,
we explored alternative linguistic quality metrics (perplexity, diversity, grammar,
complexity, answerability) that are also commonly used and offer a different
approach to question evaluation, particularly in response to the inadequacies of
previous readability metrics [125, 144, 228]. Our findings reveal that even
questions with obvious flaws can be evaluated as higher quality according to
these metrics. This discrepancy may still hold for machine generated questions
from older models, but the improved linguistic capabilities of recent LLMs mean
that more machine generated questions are likely to be deemed high quality by
these standards. Recent studies have pointed out that despite the grammatical
correctness of LLM outputs, the MCQs generated can suffer from issues like
implausible distractors or vague wording [74, 170].

SAQUET has the advantage of operating without training data, addressing
the significant challenge of sourcing IWF-tagged question datasets. Although
research utilizing the IWF rubric is widespread, access to such datasets is often
restricted. Importantly, SAQUET’s application extends beyond assessing newly
crafted questions; it is equally effective in evaluating existing question sets and
machine- or human generated questions alike. This capability allows educators
to pinpoint and address flaws in current questions they might be using,
potentially adjusting or replacing them to suit their needs. In this study, we
achieved an exact match ratio of 38% in a complex multi-label classification task
with 19 binary labels, which serves as a strong baseline for future research and
evaluation. When compared to human evaluations, SAQUET showed a propensity
to identify IWFs more frequently. We prefer this stricter approach of identifying
MCQ flaws while prioritizing false positives over false negatives, thereby ensuring
only the highest quality questions are utilized for educational purposes.

For the criteria based primarily on text matching, such as True or False, All of
the Above, or Longest Option Correct, one might intuitively expect perfect
accuracy. However, our findings indicate that these criteria can manifest in
nuanced forms, demonstrating the importance of datasets that capture a broader
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spectrum of these errors. For instance, True/False MCQs might also appear as
Yes/No choices or contain explanation text that follows the option, complicating
their identification. Similarly, interpretations of what constitutions Longest Option
Correct can vary among human evaluators, as it did in our study. In Chemistry and
Statistics this flaw was applied to questions if the second-longest option was not
nearly as long (at least 80%) as the longest. In contrast, for Computer Science,
Humanities, and Healthcare, a stricter interpretation was applied that flagged any
question where the correct answer exceeded others in length by even a single
character.

Other flaws like More than one Correct, which relied heavily on GPT-4,
presented significant challenges, notably impacting the overall exact match ratio.
This flaw saw a misclassification for 50 out of 271 questions (18.5%), making it
the most problematic. The challenge arose from GPT-4’s difficulty in reliably
identifying the correct answer for an MCQ, frequently failing to determine if a
single correct option exists. However, this limitation is not inherently negative, as
it does not imply the question is flawed, just that the LLM has the inability to
solve it [153, 228]. This highlights the ongoing challenge of accurately evaluating
complex question criteria and the limitations of current AI in navigating such
nuances, further emphasizing the need for refined and open approaches along
with diverse datasets in the evaluation process.

10.5 Limitations and Future Work
In our study, we introduced SAQUET, an automated method for evaluating
questions, employing multiple criteria that leverage LLMs like GPT-4. While
outperforming traditional automatedMCQ evaluation metrics, this approach
comes with inherent limitations, including the black box nature of LLMs, their
potential for unanticipated changes, and the risk of bias in their outputs. To
mitigate these issues and enhance this work’s reliability and cost-effectiveness,
we utilized a specific version of GPT-4 through the gpt4-0125-preview4 API.
This approach aimed to standardize the evaluation process and ensure
reproducibility by generating consistent outputs from predefined prompts.We
further supported transparency and reproducibility by open-sourcing our code1.
Expanding our dataset to include a greater number and diversity of questions
across additional domains would likely reveal further limitations and areas for
improvement in our current evaluation criteria.

For future work, we aim to enhance the evaluation techniques for the 19 IWF
criteria, with a particular focus on those that currently show weaker performance.
Acquiring additional datasets of MCQs annotated with IWFs will be crucial in
validating and demonstrating the effectiveness of our method. We encourage
educators, researchers, and practitioners to engage with our work, offering their

4 https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
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insights and improvements to refine the criteria further, as we have done. Such
collaboration would contribute to developing a more educationally robust metric
enriched by collective expertise. As LLMs advance, we anticipate that our
methodology will too, achieving greater accuracy for certain criteria and providing
detailed feedback on how to correct identified flaws.

10.6 Conclusion
In this study, we highlight the limitations of current metrics for assessing
question quality, particularly their oversight of deeper question attributes beyond
mere surface characteristics. Through analyzing a dataset of MCQs spanning five
varied domains, we illustrate that these prevalent linguistic quality metrics fall
short in effectively differentiating between flawed and flawless questions. This
gap demonstrates the need for a novel metric capable of comprehensive
question quality evaluation. In response, we refined an alternative evaluation
method that retains both automation and scalability by assessing MCQs against
a detailed 19-criteria Item-Writing Flaws rubric. Upon validating this method to
our dataset, we demonstrated its effectiveness across various domains and
identified the criteria that were most and least effective. Our findings reveal the
potential to significantly enhance question quality assessment, paving the way
for more accurate and educationally valuable evaluations.
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Chapter 11
Crowdsourced, Expert, and AI-Driven

Rubric Applications

11.1 Introduction
Multiple-choice questions (MCQs) and short answer questions (SAQs) are widely
utilized in educational assessments due to their versatility across various
learning environments [36, 140]. Despite their popularity, creating high-quality and
reliable educational assessments is challenging, often requiring significant time
and domain specific expertise [47, 86]. Existing tools and methods for crafting
and evaluating these questions are not without their issues, capable of producing
questions with inherent flaws that are potentially detrimental to their pedagogical
value. These flaws can persist in widely used question datasets and across
online courses, hindering the student learning process [50, 196]. The gold
standard for identifying and correcting these issues traditionally involves expert
human judgment [102]. Automated evaluation methods, although less subjective,
typically depend on extensive student performance data or focus on superficial
metrics like readability, which do not fully capture the educational effectiveness
of the questions or correlate with human judgment [18].

Despite the recognized need for human expertise in evaluating the quality of
educational assessments, relying solely on such input limits the scalability and
efficiency of the process. Crowdsourcing and learnersourcing offer potential
solutions by leveraging collective human intelligence on a larger scale, though
these methods often involve participants with less expertise [212, 220].
Moreover, recent developments in Large Language Models (LLMs) suggest that
AI could mimic humanlike judgment for certain educational tasks, offering a
scalable approach for assessing question quality [3, 143].

In response to these challenges, this study compares the effectiveness of
multiple crowdsourcing strategies with LLM-based methods for evaluating the
quality of 30 MCQs and SAQs across six domains. These evaluations employ two
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standardized and validated rubrics, examining the assessments' pedagogical
validity. We conducted two distinct crowdsourcing tasks, one for MCQs and
another for SAQs, to see how well novice contributors could apply these rubrics.
Concurrently, we utilized three state-of-the-art LLMs to automate the same
evaluation process. By analyzing the wisdom of the crowds [120] this research
assesses how closely the majority responses from crowdsourced evaluations
align with those generated by LLMs and verified by subject matter experts. This
study investigates two primary research questions: How do the effectiveness and
accuracy of rubric applications by crowdworkers, experts, and AI models
compare when assessing educational content (RQ1)? How consistent and
reliable are quality assessments of MCQs and SAQs within crowdsourced and
LLM methods (RQ2)?

Through the investigation of these research questions, this work makes the
following contributions: First, it demonstrates the comparative effectiveness and
accuracy of rubric applications by crowdsourced workers, experts, and LLMs in
evaluating the quality of educational assessments. Second, it provides a detailed
analysis of the consistency and reliability of quality evaluations for MCQs and
SAQs, highlighting critical trade-offs. Finally, it provides insights into the
integration of LLMs in the educational quality evaluation process, proposing a
potential hybrid approach that leverages both human expertise and AI to enhance
the quality and reliability of educational assessments.

11.2 Methods
To explore the effectiveness and trade-offs between crowdsourced and
programmatic LLM-based methods in assessing the quality of educational
questions, we conducted a comparative study across two types of questions,
multiple-choice questions (MCQs) and short answer questions (SAQs), spanning
six subject areas. Our study comprised two experiments: the first evaluated the
quality of MCQs using the 19-criteria IWF rubric, applied by various crowdworkers
and multiple LLM-based programmatic methods; the second experiment involved
a similar evaluation of SAQs using a 9-item rubric. In total, 30 questions were
evaluated, 15 MCQs and 15 SAQs, from distinct domains within mathematics,
science, and the humanities. All the questions were purely text-based, with no
accompanying images or formulas. The 15 MCQs used in this research were
sourced from a previous study, where the IWF rubric had already been applied
[51]. These MCQs were extracted from introductory online courses in Philosophy,
Statistics, and Chemistry.

The five SAQs related to Chemistry were obtained from a separate study
involving an online introductory Chemistry course [158]. We selected five SAQs
each from online Calculus and Team Collaboration courses at a university on the
U.S. East Coast. The Team Collaboration course covers communication,
teamwork, and conflict management. These questions were selected by two
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domain experts, who identified potential flaws within them. For all 15 of the
SAQs, the experts applied the 9-item SAQ rubric to evaluate these questions. To
assess the consistency of their evaluations, we calculated the inter-rater
reliability using Cohen's Kappa [148]. The overall Cohen's Kappa score was 0.79,
indicating substantial agreement between the raters across the entire rubric.
Further details about these questions are available in Table 11.1.

Domain Type Number Number of Flaws

Philosophy MCQ 5 10

Statistics MCQ 5 11

Chemistry MCQ 5 10

Team Collaboration SAQ 5 12

Calculus SAQ 5 6

Chemistry SAQ 5 11

Table 11.1: Information about the 30 questions used in this research.

11.2.1 Item-Writing Flaws Rubric
To evaluate the MCQs, we engaged both crowdworkers and LLMs to apply the
IWF rubric. The IWF rubric encompasses 19 criteria specifically designed to
assess the quality of educational MCQs. This version of the rubric has been
extensively used and validated in previous research, particularly within STEM
fields [31, 196]. The criteria cover various aspects of the questions, including the
question text, answer choices, and the correct option, ensuring a comprehensive
evaluation of each component. While expertise is not required to apply this rubric,
certain criteria, such as identifying implausible distractors or logical cues, may
benefit from domain knowledge as well as an understanding of assessment
creation. A detailed list of the 19 IWFs and their definitions is provided in Table
11.2.

Item-Writing Flaw Definition
Absolute Terms Use of definitive words like "always" or "never" that can

make a statement unequivocally true or false.

All of the Above Inclusion of an option that suggests selecting all
previous options, often giving away the correct answer.

Ambiguous
Information

Unclear or vague content that can lead to multiple
interpretations.

Convergence Cues Clues within the question or options that guide
test-takers to the correct answer.

134



Logical Cues Answer choices that can be deduced logically rather
than through knowledge of the subject.

Complex or K-type Use of complex formats like multiple true-false
questions within a single item, which can confuse
test-takers.

Fill in the Blank Questions requiring the test-taker to provide a missing
word or phrase, which can be too open-ended.

Grammatical Cues Grammatical inconsistencies between the stem and the
correct answer that can hint at the correct choice.

Gratuitous
Information

Unnecessary details that do not contribute to the
question, potentially distracting the test-taker.

Implausible
Distractors

Option choices that are obviously incorrect, making the
question too easy.

Longest Correct The correct answer is noticeably longer than the
distractors.

Lost Sequence Options that are not presented in a logical or sequential
order, causing confusion.

More than One
Correct

Multiple correct answers when only one is expected,
causing ambiguity.

Negative Wording Use of negative phrases like "Which of the following is
NOT..." that can confuse test-takers.

None of the Above Including an option that invalidates all other choices,
which can be misleading.

True or False Avoid simplistic questions using true or false, as they
reduce the depth of assessment.

Unfocused Stem The question stem is not clear or concise, leading to
confusion about what is being asked.

Vague Terms Use of unclear or imprecise terms that can be
interpreted in multiple ways.

Word Repeats Repetition of words or phrases in the stem and the
correct answer, providing unintended hints.

Table 11.2: Definitions for each of the 19 criteria used to identify common item
writing flaws in educational MCQs.

11.2.2 Short Answer Question Rubric
To evaluate the SAQs, we employed both crowdworkers and LLMs to apply a
9-item rubric. The rubric was from two previous studies that used a version of it
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for evaluating STEM questions [91, 217]. We adjusted the rubric by combining
elements from both studies to minimize the inclusion of overly subjective criteria.
However, unlike the more objective IWF rubric, this SAQ rubric still contains
criteria that can be interpreted differently. The final version of the SAQ rubric
used in this study is detailed in Table 11.3. It lists the criteria labels along with
corresponding yes-or-no questions that assess whether each criterion is met or
violated. It is important to note that the answer to the SAQ or any other
associated metadata is not required for applying this rubric's criteria during the
evaluation process. Like the IWF rubric, applying this rubric may be easier for
evaluators with domain knowledge, particularly for criteria that specify [specific
domain].

Item-Writing Flaw Definition
Understandable If you were a student in a [specific domain] course, could

you clearly understand this question without additional
explanations?

Domain Related Is the question related to [specific domain]?

Grammatical Is the question grammatically correct and free of
language errors?

Focus Is the question specific and focused on a single concept
or topic?

Conciseness Is the question concise and free of unnecessary
information?

Fairness Is the question culturally neutral and free from any
biases that might disadvantage any group of students?

Cognitive Level Does the question require students to apply higher-order
thinking skills rather than simply recalling facts?

Central Is being able to answer the question important for
understanding the topics covered by a course in
[specific domain]?

Would You Use It If you were a teacher working with content related to this
question in your course, would you include this question
in the course?

Table 11.3: Definitions for each of the 19 criteria used to identify common item
writing flaws in educational MCQs.

11.2.3 Participants
We recruited participants using two popular crowdsourcing platforms, Amazon's
Mechanical Turk (MTurk) and Prolific [67]. On each platform, participants
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received identical instructions for the task, which involved completing a survey. In
this survey, they evaluated five questions at a time, applying the appropriate
rubric based on the type of question being assessed.

To evaluate the 15 MCQs using the 19-criteria IWF rubric, we adapted it into
yes-or-no questions for crowdworkers to assess whether each MCQ violated
specific criteria. Participants were presented with each MCQ, which included the
question text and four answer choices. They were informed that the first choice,
option A, was the correct answer. This process is conducted on five distinct
MCQs drawn from introductory courses in Philosophy, Statistics, or Chemistry.
The crowdworkers evaluate each of the 19 criteria for one MCQ before moving on
to the next, completing evaluations for a total of five MCQs.

Similar to the IWF task for MCQs, the evaluation process for SAQs involved
applying the 9-criteria SAQ rubric to each question, structured as a series of nine
yes-or-no questions. Crowdworkers assessed each SAQ individually, completing
evaluations for five SAQs sequentially. Each set of SAQs covered one of the three
domains used in this experiment: Team Collaboration, Calculus, or Chemistry.

We recruited two distinct groups of participants: novice crowdworkers from
MTurk and those with some domain expertise from Prolific. All participants were
over 18 years old, self-reported as expert or native English speakers, and were
compensated at a rate of at least $18 per hour for their time. The tasks were
designed to be efficient: the average completion time for the MCQ task was 14
minutes and 36 seconds, while the SAQ task took an average of 9 minutes and 2
seconds. Upon completing the task, participants were asked to self-report their
understanding using a five-point Likert scale and to provide any written feedback.
All participants from both platforms reported scores of 4 or 5, indicating a high
level of full understanding of the task.

Amazon’s Mechanical Turk We utilized MTurk to recruit 11 unique crowdworkers
for each of the six question evaluation tasks, totaling 66 participants. To ensure
high-quality contributions without severely limiting our participant pool, we
established qualifications requiring that each crowdworker had an overall
approval rate greater than 95% before they could participate in our study. These
participants were considered novice, as none reported having professional
experience in the domains of the questions or in education more broadly.

Prolific We recruited 18 unique crowdworkers from Prolific, assigning three
crowdworkers to each of the six tasks. Each participant possessed at least a
bachelor's degree in the domain relevant to their assigned questions. For
example, the crowdworkers evaluating the five Calculus SAQs held degrees in
mathematics. This group was considered more advanced and knowledgeable
than those from MTurk, owing to their specialized educational backgrounds.
Previous research has shown that Prolific generally attracts a higher skilled
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audience capable of delivering superior results [67]. Due to these factors and
associated cost considerations, we decided to limit the number of Prolific
crowdworkers to three per task, with each group evaluating a set of five
questions from one of the six domains.

11.2.4 Application of Large Language Models
We employed three LLMs, GPT-4, Gemini 1.5 Pro (Gemini), and Claude 3 Opus
(Claude), to programmatically apply the two rubrics to our question set [104].
These three models were chosen for their strong performance benchmarks,
widespread popularity at the time, and easy API access. For the automated
application of the IWF rubric, we utilized an established automated method that
applies various NLP techniques tailored to each of the 19 criteria [160]. This
method has been previously applied in several studies involving MCQs in
domains such as Biology and Algebra [14, 154]. While this automated method
incorporates the use of an LLM, for our current study, we varied which LLM was
employed in each evaluation cycle to assess their relative effectiveness.

For the SAQs, our approach mirrored that of previous studies which have
successfully used LLMs to apply rubric criteria to educational content [101, 236].
Adopting the LLM prompting strategy of having it assume the role of an expert,
we assigned the LLMs the role of an experienced instructor tasked with
evaluating the quality of educational content [136]. Given that the 9- item SAQ
rubric consists of yes-or-no questions corresponding to each criterion, we used
these questions as prompts for the LLMs, inputting both the rubric question and
the text of the SAQ for evaluation.

The total cost and time required to evaluate all 15 MCQs and 15 SAQs using
these methods are detailed in Table 11.4. We used a single iteration of LLM
prompting for each set of questions, without running multiple iterations or
combining outputs, to align with methods used in previous research.

Method Type Cost (USD) Time (seconds)

GPT-4 MCQ 0.21 28

GPT-4 SAQ 0.72 77

Claude 3 Opus MCQ 0.13 504

Claude 3 Opus SAQ 0.24 1557

Gemini 1.5 Pro MCQ 0.04 33

Gemini 1.5 Pro SAQ 0.12 79

Table 11.4: The cost and time of GPT-4, Gemini 1.5 Pro, and Claude 3 Opus in
applying the IWF and SAQ rubrics.
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11.2.5 Data Analysis
For each evaluation task, we assessed the crowdworkers' ability to effectively
apply the specified criterion from each rubric using a consensus-based approach.
Specifically, we adopted the majority response as the representative outcome for
each criterion. For example, in the Calculus MCQ task, if six out of eleven
crowdworkers indicated that a question violated the first criterion of the IWF
rubric, this majority view was taken as the crowd's consensus. This method,
often referred to as the “wisdom of the crowd", is a widely used technique for
aggregating responses from crowdsourcing platforms [120].

For our comparison of accuracy between the crowdsourced and LLM
methods, we referred to the human evaluations within our dataset. We addressed
this multi-label classification challenge using the Exact Match ratio, which
requires correct identification of all labels for a question to be considered a
match, and the Hamming Loss, which calculates the average proportion of
incorrect labels, providing detailed insights into our classification's holistic
accuracy [185]. Performance was further assessed using the Micro F1 score for
each criterion, which combines precision (the accuracy of positive predictions)
and recall (the completeness of positive predictions) to deliver a measure of
each method's effectiveness in accurately classifying each specific criterion of
the rubrics [241]. A high Micro F1 score indicates both high precision and high
recall, indicating effective identification of criteria with minimal false positives or
negatives.

Additionally, we evaluated the Macro F1 score, which averages the F1 scores
computed for each criterion independently, showing how uniformly the method
performs across diverse categories without being influenced by the frequency of
each criterion [241]. Finally, we utilized the Jaccard Index as another metric [79].
This index measures the intersection over the union of the predicted and actual
labels at an aggregate level, offering a direct indicator of the overlap between the
two sets. This metric is valuable for assessing the overall effectiveness of the
classification in scenarios where accurate positive identifications are essential
output integrity.

11.3 Results
11.3.1 Crowdsourcing Outperformed the LLMs
MCQ Quality The 19 IWF criteria were applied to all 15 MCQs, resulting in a total
of 285 classifications. The evaluation metrics for our five assessment methods,
calculated by comparing them to the ground truth MCQ labels previously
provided by two experts, are presented in Table 11.5.

For raw accuracy, MTurk shows the highest exact match ratio at 33%,
indicating it has the highest proportion of correct predictions, exactly matching
expert labels for five of the fifteen questions. It also has the lowest Hamming
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Loss at 7%, indicating a small amount of misclassification regarding the flaws.
Due to having the most precise prediction with fewest incorrect labels, it is the
best performing method for the IWFs. However, Prolific excels in the other three
metrics, demonstrating the best balance of precision and recall across all 19 IWF
criteria.

In comparison, the three automated methods perform worse than the
crowdsourcing methods of MTurk and Prolific. Among the automated methods,
GPT-4 performs the best, achieving moderate performance across all evaluation
metrics. The poorest performer overall is Gemini, which has the lowest scores
across all five evaluation metrics.

Method Exact Match Hamming Loss Micro F1 Macro F1 Jaccard Index

MTurk 0.333 0.070 0.643 0.385 0.474

Prolific 0.200 0.081 0.667 0.535 0.500

GPT-4 0.200 0.091 0.567 0.370 0.395

Gemini 0.067 0.140 0.444 0.316 0.286

Claude 0.133 0.105 0.500 0.319 0.333

Table 11.5: Performance of 5 methods at applying the 19-criteria IWF rubric to 15
educational MCQs.

SAQ Quality The 9-item rubric was applied to all 15 SAQs, resulting in a total of
135 classifications. The evaluation metrics for our five assessment methods,
calculated by comparing them to the ground truth SAQ labels provided by two
experts, are presented in Table 11.6.

Method Exact Match Hamming Loss Micro F1 Macro F1 Jaccard Index

MTurk 0.200 0.193 0.886 0.875 0.795

Prolific 0.200 0.163 0.897 0.879 0.814

GPT-4 0.267 0.185 0.892 0.882 0.805

Gemini 0.133 0.193 0.876 0.864 0.779

Claude 0.133 0.244 0.841 0.827 0.725

Table 11.6: Performance of 5 methods on applying the 9-criteria rubric for
evaluating educational SAQs.

While GPT-4 achieves the highest exact match ratio, successfully classifying the
most SAQs accurately across all 9 criteria, it is not the best overall performer.
Prolific stands out by achieving high evaluation metrics, particularly in Micro F1
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and Jaccard Index, which indicate a strong balance of precision and recall.
Additionally, Prolific has the lowest Hamming Loss of all methods, indicating it is
the most accurate in labeling. Similar to its performance in the MCQ evaluation,
MTurk also performs well, achieving metrics only slightly lower than Prolific.

The remaining two automated methods, Gemini and Claude, performed
poorly by comparison. Claude achieved the worst results across all evaluation
metrics. This shows that while some automated methods can be effective, there
is significant variation in their performance. Overall, Prolific emerges as the most
reliable method for evaluating the quality of educational SAQs, combining high
precision and recall with the lowest rate of labeling errors.

11.3.2 Evaluating Method Trade-Offs
While much of the evaluation metrics focused on exact match and Hamming
Loss, these do not provide a holistic picture. Exact match is strict and can be
skewed by a few incorrect predictions, while Hamming Loss offers only a broad
error rate. To provide a more comprehensive evaluation, we use the Micro F1
score, which considers both precision and recall, enabling a more accurate and
realistic assessment of each method's effectiveness [241].

IWF Performance We present a comparison of Micro F1 scores for the top three
performing methods, MTurk, Prolific, and GPT-4, across all 19 criteria from the
IWF rubric, as shown in Figure 11.1.

Less subjective criteria, which are simple enough to be addressed through
programmatic string matching, such as absolute terms, all of the above, and fill in
the blank, perform highly across all three methods. In contrast, more subjective
measures that might be influenced by domain knowledge or instructional design
preferences posed a challenge for the three methods. For instance, ambiguous
information is one of the lower-scoring criteria, especially for GPT-4, indicating a
difficulty in handling ambiguity in text. Similarly, implausible distractors present a
challenge for all three methods, although GPT-4 performs the best in this area
despite it requiring domain knowledge. Separating the evaluation by criteria
further demonstrates that Prolific consistently achieves the highest performance.
Notably, there are multiple criteria where all three methods perform at the highest
level, achieving a Micro F1 score of 1.
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Figure 11.1: Comparison of Micro F1 scores across 19 IWF criteria for MTurk,
Prolific, and GPT-4, illustrating the performance of the three top-performing

methods in evaluating MCQs.

SAQ Rubric Performance We present a comparison of Micro F1 scores for the
top three performing methods, MTurk, Prolific, and GPT-4, across all 9 criteria
from the SAQ rubric, as shown in Figure 11.2.

The most subjective criterion, would you use it, posed a challenge, as even
the experts who reviewed these questions to create our ground truth struggled
with this criterion, as it is purely subjective and influenced by many factors. Less
subjective criteria, such as the conciseness of the text, also had poor
performance across all methods.

The understandable criteria achieved high performance despite its potential
subjectivity and influence from domain knowledge. Compared to the two
crowdsourcing methods, GPT-4 achieved superior performance in cognitive level
and grammatical criteria. Machines are typically good at these tasks, as cognitive
level can be partly determined by verb usage [17], and grammatical correctness
has been a significant focus of LLMs and NLP work [236]. Even though Prolific
generally achieved the highest or tied for the highest performance on each
criterion, GPT-4 performed quite close to it.
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Figure 11.2: Comparison of Micro F1 scores for evaluating SAQs across 9 criteria
by the three methods.

11.4 Discussion
In this study, we evaluated 30 questions, five from each of six distinct domains,
using two crowdsourcing platforms and three state-of-the-art LLMs to apply two
different rubrics. The results indicate that while the human-involved
crowdsourcing methods generally outperformed the automated approaches, the
LLMs performed comparably well on many criteria and even exceeded human
performance on some. Across both types of questions at least one method,
automated or crowdsourced, achieved perfect or near-perfect classification for a
given criteria in alignment with human expert labels. These findings support the
potential for a hybrid approach where human expertise is utilized primarily for the
most challenging criteria, while AI handles the more straightforward tasks.

11.4.1 Method Evaluation
We observed that the crowdsourcing methods outperformed the programmatic
methods across the two tasks. Specifically, MTurk was the top performer for
IWFs and Prolific excelled in the SAQ rubric evaluation. MTurk's workers typically
possess less domain knowledge, a factor we controlled by selecting participants
with relevant expertise on Prolific [67, 155]. The detailed and less subjective
nature of the IWF rubric likely aided MTurk workers by providing sufficient
guidance, despite their varied knowledge levels. For the SAQ task, Prolific
superior performance is attributable to our targeted recruitment of individuals
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with relevant academic qualifications. This was crucial since the SAQ task's
criteria are inherently more subjective and knowledge-intensive [217].

Regarding automated methods under the same research question, they
generally underperformed when compared to the crowdsourced approaches.
Notably, the latest iterations of Gemini 1.5 Pro and Claude 3 Opus were less
effective than GPT-4, while also taking longer to complete (see Table 11.4).
However, across all evaluation metrics, crowdsourced methods consistently
outperformed automated ones. Despite the challenges of these 19-item and
9-item multi-label classification tasks, where achieving an exact match required
correct labeling of each item, all methods managed to maintain a low hamming
loss rate, demonstrating a base level of competency in handling these complex
tasks.

11.4.2 Performance Variability
In applying the IWF rubric, both crowdsourcing methods either matched or
outperformed the automated GPT-4 process, with the notable exception of the
implausible distractor criteria. It appears that GPT-4 may have surpassed the
crowd in this area due to its ability to quickly identify outliers in data sets [219].
This finding suggests that while human input remains crucial in the question
quality evaluation process, automated methods could effectively handle specific
criteria where their performance is comparable to that of humans. Implementing
such a hybrid approach could reduce the workload for experts or crowdworkers;
instead of assessing 19 IWF criteria per question, they might only need to
evaluate 5, primarily confirming or refining the outputs from the automated
evaluation. This could also lessen the demand for deep domain knowledge, as
crowdworkers could focus on verifying the logic behind the AI's classifications,
which provides a layer of human oversight to help mitigate the potential bias and
errors introduced by the LLM [97].

Furthermore, in the more complex and detailed IWF rubric (19 criteria)
compared to the SAQ evaluation (9 criteria), the performance was generally
lower. The subjective nature of the would you use it criteria posed a particular
challenge, especially for programmatic methods. It is difficult for both LLMs and
humans to assess such a criterion effectively without substantial contextual
information. Even less subjective criteria, like the conciseness of SAQs, showed
low performance across all methods. This variability could be attributed to the
diverse interpretations of conciseness among crowdworkers given their unique
backgrounds.

11.4.3 Feasibility
Assessing the feasibility of different methods for evaluating educational content,
it becomes clear that neither experts nor crowdsourcing are cost-effective
options. For instance, while Prolific achieves high results, the time and cost it
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took to set up the task to evaluate five questions in a typical online course is
impractical.

Despite the costs and challenges, automated methods have shown promise,
particularly as LLMs continue to advance. Yet, human computation still appears
to be the most effective for evaluating MCQs and SAQs. Combining the two by
integrating human insights with automated processes could optimize efficiency.
For example, the use of GPT-4 could be integrated as part of a hybrid workflow,
as it has demonstrated success by achieving perfect Micro F1 scores for several
criteria and performing comparably to human evaluators in other aspects. This
suggests a combined approach might alleviate some of the burdens on human
evaluators by involving them only when necessary.While designing better
questions from the start is ideal, there's a practical aspect to consider as well:
many existing questions are already available in various banks and online
courses [51]. Instead of creating new content from scratch, a more efficient
approach could be to evaluate and improve existing questions. Crafting
high-quality MCQs and SAQs is a skill that requires time and practice, and even
LLMs occasionally produce flawed questions. Recognizing that no method is
perfect, leveraging both automated and human resources could enhance the
overall quality of educational assessments.

11.4.4 Limitations
The inherent subjectivity associated with human ratings was addressed by
employing verified and validated rubrics, yet some level of subjectivity inevitably
remains. Additionally, the use of LLMs introduced potential biases related to their
training data and algorithms. The task formulation itself, both for the
crowdworkers and the LLMs, presented challenges, including the precise wording
of rubric criteria and considerations regarding the native language of
participants, which could affect their understanding and application of the
rubrics. Particularly with LLMs, the various prompt wordings can drastically
change the outputs as well, so consistent phrasing and temperature is crucial for
reliable results.

11.5 Conclusion
This study explored the effectiveness and reliability of crowdsourced and
programmatic methods for evaluating the quality of multiple-choice questions
MCQs and SAQs across various educational domains. By leveraging the IWF
rubric and a 9-item SAQ rubric, we systematically compared the performance of
crowdworkers from MTurk and Prolific with three state-of-the-art LLMs: GPT-4,
Gemini 1.5 Pro, and Claude 3 Opus. Our findings reveal that while crowdsourcing
can harness wide-reaching human insights, LLMs offer a scalable alternative that
approaches the reliability and accuracy of expert judgments. The application of

145



standardized rubrics by both crowdworkers and LLMs highlighted the potential
for a hybrid approach, combining the nuanced understanding of human reviewers
with the efficiency and consistency of automated systems. This work highlights
the trade-offs of each method and demonstrates the feasibility of integrating
these approaches to improve the pedagogical value of assessments. As we
move forward, refining these hybrid strategies could significantly enhance the
way educational content is evaluated, ensuring both the scalability of the
evaluation process and the quality of educational assessments.
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Chapter 12
Automated Generation and Tagging of

Skills to MCQs

12.1 Introduction
Digital learning platforms, such as MOOCs and interactive online courses,
facilitate the mapping of assessments to specific skills or competencies, referred
to as Knowledge Components (KCs). These KCs are instrumental in driving
learning analytics systems, enabling adaptive content sequencing, and providing
precise estimates of student mastery levels [26, 38, 94]. KCs embody the
cognitive functions or structures inferred from student performance on related
assessments and are more nuanced and fine-grained than broad course learning
objectives [116]. The process of associating assessments with KCs, often
referred to as skill or concept tagging, generates a comprehensive map of the
knowledge conveyed by the platform or course. This mapping, termed Knowledge
Component Model (KCM), is crucial for closely monitoring student learning,
allowing educators to identify precisely which concepts a student may find
challenging based on their assessment performance [191]. Without an accurate
KCM, the effectiveness of assessing mastery and implementing adaptive
learning strategies may be significantly hindered [179].

While KCMs offer numerous benefits for digital learning platforms, the
creation of KCs for each assessment is a time intensive process that demands
domain expertise. This usually requires a domain expert, such as the course
instructor, to determine the necessary KCs for solving each assessment [45].
This process necessitates the identification of at least one KC per assessment
item and can involve identifying up to three or more KCs, depending on the
complexity of the assessment, the subject area, and the educational level [28].
Modifying existing KC tags is equally challenging; although evaluating the
effectiveness of KCMs is feasible, adjusting it can be as time-consuming as the
initial creation process. Evaluation methods such as learning curve analysis and
statistical measures such as Akaike Information Criterion (AIC) can provide
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insights into the effectiveness of the KCMs [118]. However, these methods often
require large amounts of data to produce reliable results, and primarily focus on
the fit and predictive accuracy of the model, potentially overlooking the
contextual and practical applicability of the KCs in diverse educational
environments. The continual evaluation and updating of these models remain
critical, as many learning platforms in the United States have begun transitioning
to common taxonomies, like the Common Core State Standards, necessitating
the retagging of content or the alignment of existing mappings with these
standards [194]. This re-mapping is not only labor-intensive but also needs to be
revisited with each update or change to the common standards, adding to the
ongoing workload.

To mitigate the challenges associated with mapping KCs to assessments, a
variety of automated solutions employing machine learning (ML) and natural
language processing (NLP) have been proposed [78, 180]. These approaches
primarily employ classification algorithms, using an existing repository of KCs as
reference labels for mapping. However, one critical limitation of these techniques
is their reliance on a predefined set of KCs. They are not designed to identify new
KCs, but instead depend on a pool of KCs, which may not always be available.
The difficulty of automatically generating new KCs lies in ensuring their
specificity and relevance to the problem at hand, their relationship with other KCs,
and their alignment with the overall course content [226]. Consequently, while the
challenge of associating assessments with existing KCs is significant, the task is
further complicated by the initial requirement to generate these KCs, a step that
previous efforts often overlook. When previous studies involve KC generation,
they are frequently unlabeled, necessitating a human to create their descriptive
text labels [21, 38].

Recent advancements in large language models (LLMs) have shown
promise in automating the generation and tagging of metadata to educational
content [200]. To explore this possibility in the context of KCs, we utilize datasets
from two different domains: Chemistry and E-Learning, encompassing the
higher-education levels of undergraduate and masters. The respective datasets
contain multiple-choice questions (MCQs), with each question mapped to a
single KC. We leverage GPT-4 [175], a state-of-the-art LLM, to generate a KC for
each MCQ by employing two distinct prompting strategies, based solely on the
text of the MCQs. We then compare LLM-generated KCs to the original
human-assigned ones, which serve as our gold standard labels. For KCs that did
not match, we had groups of three human domain experts evaluate the
discrepancies to determine their preferred KCs, which often leaned towards the
ones generated by the LLM. Additionally, to organize the KCs, we implement a
clustering algorithm that leverages the content of the MCQs to group questions
that assess the same KCs. Our research presents a methodology that automates
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the process of generating and tagging KCs to problems across various domains,
relying exclusively on the text of the assessments.

The main contributions of this work are: 1) A proposed method for
generating KCs for assessments using LLMs, 2) Empirical and human validation
of the LLM-generated KCs, and 3) A technique that iteratively induces a KC
ontology and that clusters assessments accordingly.

12.2 Methods
12.2.1 Datasets
In this study, we utilized two datasets from higher education MOOCs: one in
Chemistry and the other in E-Learning. Each dataset comprises 80
multiple-choice questions (MCQs), with each question offering between two to
four answer options. These datasets are structured such that each KC is
represented by exactly two MCQs, totaling 40 KCs in each dataset. The ground
truth KCs associated with each question were previously identified by domain
experts who contributed to developing the content and authoring the courses. A
key selection criterion for these questions was that each should be associated
with a single KC, ensuring clarity in mapping.

The Chemistry dataset5 originates from an online course adopted by various
universities across the United States as instructional materials for an
undergraduate introductory Chemistry course. This content is hosted on a widely
used digital learning platform and is often integrated into a flipped-classroom
model, supplementing in-person instruction. Similarly, the E-Learning dataset6 is
derived from a master’s level course at a university in the eastern United States,
utilizing the same digital platform for implementation. Both datasets and the
code utilized in this study are available for inspection7.

12.2.2 Prompting Strategies
To automatically generate KCs, our research employed the
gpt4-0125-preview8 API, chosen for its speed, reduced cost, and the
consistency it offers. This decision was made to avoid the variability that might
arise from continuous updates to the standard GPT-4 API, which could impact the
reproducibility of our results. Following recommendations from existing literature
[16, 190], we developed two prompting strategies to generate the KCs for each
question: the simulated expert approach and the simulated textbook approach.
For both strategies, the only contextual information provided to the language
model was the course’s educational level (undergraduate or master’s) and the

8 https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
7 https://github.com/StevenJamesMoore/LearningAtScale24
6 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5843
5 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=4640
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subject area (Chemistry or E-Learning). For each approach we supplied a MCQ,
which included the question text, the correct answer, and the alternative options.
This choice was motivated by our aim to develop a method that could be
generalized, recognizing that providing extensive contextual information might
not always be feasible for certain question banks or assessment content. This is
also aligned with previous research that has attempted to generate KCs based
solely on the content’s text using automated NLP-based approaches [146, 208].
The exact prompts used for the simulated expert strategy are illustrated in Figure
12.1 and the prompts for the simulated textbook strategy are in Figure 12.2.

“““Simulate three experts collaboratively evaluating a
college level multiple-choice question to determine what
knowledge components and skills it assesses. The three
experts are brilliant, logical, detail-oriented, nit-picky
{subject} teachers. The multiple-choice question is used
as a low-stakes assessment as part of an {context}
{subject} course that covers similar content. Each person
verbosely explains their thought process in real-time,
considering the prior explanations of others and openly
acknowledging mistakes. At each step, whenever possible,
each expert refines and builds upon the thoughts of
others, acknowledging their contributions. They continue
until there is a definitive list of five knowledge and
skills required to solve the question, keeping in mind
that the question is for a college audience with existing
prior knowledge. Once all of the experts are done
reasoning, share an agreed conclusion.

Question text: {question_text}
Correct answer: {answer_text}”””

“““Based on the reasoning from these three experts and
their conclusion, reword these five points to begin with
action words from Bloom's Revised Taxonomy.
Reasonings: {reasonings}”””

“““Reasonings: {reasonings}
Five points: {points}

Of these five points, which one is the most relevant to
the question?”””

Figure 12.1: Three prompts used for the simulated expert prompting strategy for
KC generation.
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“““Below there is a multiple-choice question intended for
a {context} audience with existing prior knowledge on the
subject of {subject}. The question is used as a low-stakes
assessment as part of an {context} {subject} course that
covers similar content. The first answer choice, option
A), is the correct answer. If this question was presented
in a textbook for an {context} {subject} course, what five
domain-specific low-level detailed topics would the page
cover? Note that the question is for a college audience
with existing prior knowledge in {subject}.

Question text: {question_text}
{options_text}”””

"Based on these topics, reword them to begin with action
words from Bloom's Revised Taxonomy, while keeping them
domain-specific, low-level, and detailed."

"Of these topics, which is the most relevant to the
question?"

Figure 12.2: Three prompts used for the simulated textbook prompting strategy
for KC generation.

In the first prompting strategy following the simulated expert approach, we
employed the tree-of-thought technique, directing the LLM to emulate a
discussion among three expert instructors [137]. The objective was to identify
five specific, detailed skills and knowledge assessed by the provided MCQ. After
this simulated discussion, the experts were expected to produce a list of the key
skills they deemed necessary for answering the question. Subsequently, we
introduced a prompt that instructed the LLM to refine the language of this list,
aligning it with the verbs typically used in Bloom’s Revised Taxonomy [119]. This
step was deliberately conducted after the initial list creation to avoid
predisposing the selection of certain verbs, which we found reduced the quality
of the labels during pilot testing. For instance, without this step, the experts
would typically always suggest skills around the words of “understand”, “apply”,
and “analyze” as they tried to strictly adhere to these levels of Bloom’s Revised
Taxonomy. Finally, leveraging the insights from the discussion, the refined list of
skills and knowledge aligned with Bloom’s Taxonomy, and the MCQ itself, the last
prompt required the LLM to select the skills or knowledge most pertinent to the
question at hand.

Our second prompting strategy, simulated textbook, drew inspiration from
recent advancements in the creation of knowledge graphs, which frequently
employ digital textbooks as a foundational source [40, 226]. These methods
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leverage structural elements like text headers or textbook indexes to outline the
initial framework of the graph. Mirroring the expert approach, this strategy
contextualizes the task around a MCQ as it might appear in a textbook. The LLM
was tasked with identifying the specific, detailed topics a textbook page would
cover if it included the given MCQ. Following this, a subsequent prompt directed
the LLM to refine these topics, utilizing the language and verb categories found in
Bloom’s Revised Taxonomy [119]. The final step involved selecting the topic most
relevant to the MCQ, ensuring that the identified knowledge areas were directly
applicable to the question’s context.

12.2.3 Human Evaluation
To benchmark this work, we initially compared the original KC tags, which were
manually generated by the course creators, to those generated by the LLM. This
comparison provided a baseline matching metric for each of the two prompting
strategies across both domains. Beyond this direct match metric, our analysis
extended to evaluating the outcomes of the second prompt within each
prompting strategy. For both prompting strategies, this second prompt generates
a list of the top five potential KCs for a MCQ, as identified by the LLM. This top
five list was created with the intention of presenting it to an expert for selection,
as part of potential future work. We considered it a partial success when the
original manually generated KC tag appeared within this top five list, for either of
the strategies. This occurrence was documented as a secondary, albeit less
precise, metric of matching accuracy.

Recognizing that manually created KCMs can have issues, such as incorrect
labeling or wording that misrepresents the required knowledge or skills, we
implemented a secondary human evaluation. This aimed to assess the
preference between LLM generated KCs and the original human-generated KCs,
specifically for instances of mismatch. This secondary evaluation was only done
for the mismatches from the simulated textbook strategy, as that had the highest
matching percent to the original KC labels across both domains. For example, in
a Chemistry MCQ, the human-generated KC was labeled "Use Gay Lussac’s law"
whereas the LLM-generated KC was “Understand gas pressure-temperature
relationship". Given this discrepancy, we asked multiple human evaluators to
choose which KC they believed more accurately matched the MCQ.

For this evaluation, we enlisted three domain experts in Chemistry and three
in E-Learning. In the case of Chemistry, experts holding a bachelor’s degree in
Chemistry from the United States were recruited through Prolific, an online
research platform [177]. These experts were given a survey implemented via
Google Forms that tasked them with reviewing a series of MCQs accompanied by
two KC labels. They were instructed to select the label that best matched a set of
predefined KC criteria aligned with the KLI framework [116]. These criteria
emphasized clarity, direct relevance to the subject matter, factual accuracy, and
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the ability to apply or integrate the knowledge into broader contexts or practical
situations. Specifically, for the 35 MCQs identified as mismatches from the
simulated textbook strategy in Chemistry, experts evaluated which of the two
labels best met these criteria in relation to the MCQ. On average the task took
roughly 28 minutes and participants received a compensation of $10.

The same procedure was applied to the E-Learning dataset, adhering to
identical instructions and task formats as used for Chemistry. However, the three
domain experts involved in this evaluation were instructional staff who had both
participated in the E-Learning course and contributed to its development yet had
not participated in the original creation of the KCM. For the ELearning dataset,
there were 52 MCQs identified as mismatches based on the simulated textbook
strategy. On average the task took roughly 32 minutes and participants received a
compensation of $15.

An example of a Chemistry and E-Learning question used in both tasks can
be seen in Figure 12.3. To ensure objectivity, the sequence of questions and the
presentation order of the two labels for each question were randomized for each
expert. To address the issue of LLM-generated KC labels being more verbose
than their human-generated counterparts, we utilized the gpt-4-0125-

preview API to refine these labels for clarity and brevity. We issued a prompt
directing the LLM to rephrase each KC, ensuring the revised length did not exceed
1.5 times the word count of the corresponding human-generated KC. For
example, a human generated KC consisting of ten words would result in an
LLMrevised KC limited to a maximum of fifteen words. This approach was
implemented to equalize the articulation level across labels and align with the
typically concise format of KC labels. The preferred label was determined based
on a majority vote, where at least two out of three experts had to agree on the
choice. This methodological approach aimed to rigorously assess the
comparative quality and applicability of LLM-generated KCs against those
originally crafted by humans.
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Figure 12.3: A Chemistry MCQ (top) and E-Learning MCQ (bottom) used in this
study.

12.2.4 Generating KC Ontologies
The prompting strategies described above can be employed to generate KCs for
each individual question. One limitation of this methodology is that two
questions that assess the same KC can receive LLM-generated labels that both
contain the correct semantic information, but that feature two different wordings,
as seen in Figure 12.4. Thus, the resulting KCM might contain redundancies
which need to be resolved before using the KCM for purposes of assessing
students’ KC mastery or problem sequencing.
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Table 12.4: Two Chemistry MCQs targeting the same KC, with slight wording
variations by the LLM.

To promote alignment between the generated KCs, we propose an algorithm that
induces an ontology of KCs of increasing granularity by iteratively partitioning the
question pool into multiple groups. The overall algorithm is presented in
Algorithm 1. The algorithm employs two prompts, shown in Figure 12.5, fulfilling
two distinct tasks: (i) Determine a set of learning objectives that can be used to
partition the question pool; (ii) Assign each question to one of the learning
objectives to form groupings. After grouping the questions, the algorithm uses
recursion and continues partitioning the individual subgroups until the LLM
learning objectives are of finer granularity or until a group only contains a single
question. We phrase the task of identifying KCs as determining fine grained
learning objectives to be more aligned with common language. While it seems
tempting to directly employ the partitioning induced by the first prompt, we
noticed that when working with large questions list (e.g., >50) GPT-4 can fail to
execute the instructions correctly either omitting questions in the assignment
process or by assigning the same question to multiple groups. Having an explicit
classification prompt that assigns each question to the most relevant group
resolves this issue.

DETERMINE KCS PROMPT “““Below there is a list of questions
and answers intended for a {context} audience with
existing prior knowledge on the subject of {subject}. You
are an educator who sorts the questions based on learning
objectives into groups. Ensure that each question belongs
to EXACTLY one group (not more or less).

Question List:
{question_list}
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Use the following output format:
Group 1 name: [learning objective]
Group 1 questions: [Q1_1, ..., Q1_j]
...
Group N name: [learning objective]
Group N questions: [QN_1, Q_N_k]“““

CLASSIFY QUESTION PROMPT “““Below there is a question, its
answer, and a list of learning objectives. You are a
{subject} educator that determines the learning objective
that is most relevant to the question.

Question: {question}

Learning Objectives:
{objectives}

Use the following output format:
Most relevant Objective: [OBJECTIVE NUMBER]“““

Figure 12.5: Two prompts are used to determine appropriate learning objectives
and then to classify the individual questions.

The iterative partitioning of questions induces an ontology of KCs of increasing
levels of granularity. The expert can then decide which level of granularity is most
suitable for their application. In this work, we employ the expert labeled datasets
to evaluate the quality of our groups. Each dataset features a set of KCs denoted
𝐾 and a set of questions denoted as 𝑄. By design each 𝑘∈ 𝐾 is associated with
two questions 𝑞𝑘,1, 𝑞𝑘,2 ∈ 𝑄. A question grouping 𝐺 is characterized by a set of
disjoint groups {𝑔1, … , 𝑔𝑛} each hosting a subset of 𝑄 (i.e., 𝑔𝑖 ⊆ 𝑄). The optimal
grouping 𝐺∗ is characterized by |𝐺∗| = |𝐾| and for all 𝑘∈ 𝐾 there is an 𝑖∈ 1, … , |𝐾|,
such that 𝑔𝑖 = {𝑞𝑘,1, 𝑞𝑘,2}. Each step of our algorithm induces a grouping 𝐺𝑡 . To
assess the quality of these groupings at each step we define grouping accuracy
and grouping refinement measures as follows:

Grouping accuracy describes the proportion of question pairs which are correctly
co-located in one of the groups. Grouping refinement evaluates the average
number of KCs in each group. The optimal grouping 𝐺∗ has an accuracy of 1 and
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a refinement of 1. The initial dataset that hosts all questions in a single set has
an accuracy 1 and refinement 1 ⁄ |𝐾|. We want our algorithm to increase the
refinement of the groupings while maintaining a high level of accuracy (i.e., we do
not want to split up question pairs of the same KC).

Table 12.1 displays the token counts and costs associated with two KC
generation prompting techniques, expert and textbook, as well as the generation
of KC ontologies for each domain.

Method MCQ
Count

Total
Tokens

Prompt
Tokens

Completion
Tokens

Cost

expert 160 462,880 307,680 155,200 8.00

textbook 160 436,480 239,040 193,120 8.00

chemistry
ontology

80 104,548 97,736 6,812 3.34

e-learning
ontology

80 87,742 81,114 6,628 2.83

Table 12.1: Summary of token distribution and associated costs for the different
prompting approaches.

12.3 Results
In our study, we initially evaluate the effectiveness of the two prompting
strategies within the domains of Chemistry and ELearning. This evaluation is
based on how well each strategy’s outcomes align with the expert KCM.
Subsequently, we explore the preferences of domain experts for the KC labels
when discrepancies arise, determining whether they favor labels generated by
human experts or those produced by the LLM. Lastly, we examine the
performance of our ontology induction algorithm in both domains, focusing on its
capability to categorize unlabeled questions by identifying shared KCs.

12.3.1 KCM Match Success
For the first part of this study, we evaluated how well the KCs generated by the
LLM aligned with the KCs originally assigned to MCQs by their authors, across
two distinct prompting strategies. Our assessment included a direct comparison
of the LLM generated KC to the author-assigned KC for each MCQ. Additionally,
we examined the top five KCs proposed by the LLM from the second prompt in
both strategies to determine if any of these suggestions matched the
author-assigned KC. Furthermore, we explored whether each MCQ was correctly
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categorized by only one strategy or if both strategies successfully identified the
correct KC. The outcomes of these comparative analyses are presented in Table
12.2.

Method
Chemistry E-Learning

Expert Textbook Expert Textbook

Direct
Match

42/80
(52%)

45/80
(56%)

28/80
(35%)

28/80
(35%)

Top
Five

64/80
(80%)

63/80
(79%)

45/80
(56%)

50/80
(63%)

Matched
Exclusively

9/80
(11%)

12/80
(15%)

9/80
(11%)

9/80
(11%)

Matched
by Both

33/80
(41%)

19/80
(24%)

Table 12.2: For each domain (Chemistry & E-Learning) and strategy (Expert &
Textbook), the performance of LLM-generated KCs in relation to the existing
KCM. The frequency of direct matches with the human tagged KC; instances

where the KC was present in the top five LLMgenerated KCs; occasions where a
KC was uniquely identified by only one strategy; and cases where both strategies

matched the human tagged KC.

Our two-proportion z-test comparing the KC match rates of the simulated
textbook strategy for Chemistry (42/80, 52%) and ELearning (28/80, 35%)
questions revealed a significant difference (Z=2.698, p=.007). This indicates a
statistically significant better performance of the simulated textbook strategy for
Chemistry over E-Learning at p < .05, rejecting the null hypothesis of no
difference in KC match rates.

We further explored the effectiveness of the simulated textbook strategy for
identifying KCs across the MCQs in both domains. This analysis focused on the
40 KCs in each domain, where each KC was linked to 2 MCQs, to assess the
accuracy of their tagging. In the Chemistry domain, the simulated textbook
strategy successfully matched both MCQs to their correct KCs in 15 out of 80
cases (19%), correctly matched just one of the two MCQs also in 15 out of 80
cases (19%), and failed to match the KC in either MCQ for 10 out of 80 cases
(13%). Similarly, in the E-Learning domain, both MCQs were accurately matched
with their KC in 7 out of 80 cases (9%), only one of the two MCQs was correctly
matched in 14 out of 80 cases (18%), and both MCQs failed to be matched in 19
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out of 80 cases (24%). These results reveal the LLM’s variable success rate in
precisely identifying KCs through MCQs across different educational domains,
suggesting superior performance for Chemistry compared to E-Learning.
However, a chi-square test of independence revealed no significant association
between the domain and the three aforementioned matching outcome categories
(X2 (2, N=160) = 5.737, p=.057).

12.3.2 Human KC Preference
For the MCQs in both the Chemistry and E-Learning domains that did not have a
successful match with their KC using the simulated textbook strategy, we
established the preferred KC label through the consensus of three domain expert
human evaluators. A KC label was considered preferred only if at least two out of
the three evaluators agreed on its selection. From the simulated textbook
strategy, Chemistry had 35 MCQs where the human and LLM KCs were
mismatched, and E-Learning had 52 MCQs.

Within the Chemistry domain, analysis of 35 MCQs revealed a clear
preference for the LLM-generated KC labels, which were chosen in 23 out of 35
cases (66%), compared to human-generated labels preferred in 12 instances
(34%). Additionally, we observed a substantial level of agreement among the
experts, with two-thirds majority agreement (at least two evaluators in
agreement) occurring in 25 out of 35 cases (71%), while unanimous agreement
(all three evaluators in agreement) was found in 10 cases (29%). Similarly, in the
E-Learning domain, upon examining 52 MCQs, LLM-generated labels were
preferred in 32 cases (62%), with human-generated labels being chosen in 20
cases (38%). The evaluators demonstrated a clear consensus, with two-thirds
majority agreement present in 34 out of 52 instances (65%) and unanimous
agreement observed in 18 instances (35%). A comparison of the preferences by
domain can be seen in Figure 12.6. Aggregating preference data from both
domains we can verify a statistically significant preference for the LLM-generated
KCs. A two-sided binomial test was conducted to assess whether the human
evaluators exhibit a preference towards expert or LLM generated KC labels. For
57 out of 87 evaluated MCQs, the evaluators favored the LLM-generated labels,
indicating a statistically significant preference (p=0.017).

159



Figure 12.6: Comparison of domain expert preferences for human- vs.
LLM-generated KC labels.

12.3.3 Generated KC Ontologies
We now focus on the KC ontologies generated by the clustering algorithm for the
Chemistry and the E-Learning datasets. An excerpt of the KC ontology for
Chemistry is shown in Figure 12.7. Going from the root of the tree downwards we
can observe how the KCs identified by the algorithm increase in granularity at
each step.
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Figure 12.7: A section of the tree structure demonstrating KC ontology
refinement for part of Chemistry.

To evaluate the quality of the KCM at different steps we employ the grouping
accuracy and refinement metrics defined in Section 3.4. First, for Chemistry
(Figure 12.8, left) the algorithm converges within 6 iterations to a KCM that
groups the 80 questions into 42 different KCs–close to the expert model with 40
KCs. At time of convergence the grouping accuracy indicates that 65% of the
question pairs are matched correctly and the grouping refinement of 0.804
indicates that the majority of nodes only feature questions belonging to a single
KC. Second, for E-Learning (Figure 12.8, right) the algorithm converges within 5
iterations to a KCM that groups the 80 questions into 63 different KCs-exceeding
the expert model with 40 KCs. At the time of convergence, the grouping accuracy
is 17.5% and the grouping refinement is 0.848. Because the final ELearning KCM
employs 63 KCs, many KCs are only tagged to a single question leading to splits
between the expert defined question pairs explaining the low accuracy. This
suggests that LLM-generated KCM is of finer granularity than the human expert
KCM. In real world applications, the domain expert might want to employ a lower
level of KC granularity which can be achieved by terminating the algorithm early.

Figure 12.8: Information about the 30 questions used in this research.

12.3.4 KC Ontology Verification
To evaluate the effectiveness of the ontology grouping method, we conducted a
comparative analysis against other straightforward KC grouping strategies.
Specifically, we compared the results of three different steps in our ontology
method with the following groupings:

Expert Model: The 40 KCs originally assigned to the 80 MCQs by their author.

161



All Model: Treating all questions as a single KC, assuming that they all assess
the same underlying skill or knowledge.

Single Model: Assigning each individual question to its own unique KC,
maximizing the granularity of the grouping.

To ensure a fair comparison, we used the item-blocked cross-validated Root
Mean Square Error (RMSE) as our evaluation metric [90]. This approach involves
partitioning the data based on items (MCQs) rather than students, which helps in
assessing how well the model predicts unseen questions. We focused on the first
three iterations of the ontology-based grouping method to analyze how
incremental refinements impact the model's predictive accuracy. Each iteration
represents a stage in the refinement of the ontology, where each step is further
refinement, meaning the MCQs are put into more groups corresponding to KCs.
By examining these steps, we aimed to determine whether successive
improvements in the ontology lead to better model performance compared to
simpler grouping methods, while also balancing a realistic use case of trying the
first three iterations, thus reducing time and cost.

Table 12.3 compares the performance of the first three ontology grouping
steps with the All, Single, and Expert models for the 80 MCQs in both Chemistry
and E-Learning. Using student data collected from the fall 2022 courses, we
evaluated each model's performance using item-blocked RMSE, which measures
the average difference between predicted and actual values, with lower values
indicating better model accuracy.

For Chemistry, we analyzed 3,071 observations, while for E-Learning, there
were 4,130 observations. In the Chemistry domain, the Step 2 ontology model
had the best performance, whereas in E-Learning, the Expert model performed
the best. Across both domains, all three ontology-based models (Steps 1–3)
outperformed the All and Single models. Notably, in E-Learning, the Step 3 and
Expert models had nearly identical performance, differing by just 0.0005 RMSE,
demonstrating highly comparable results.

Model Chemistry
KC #

Chemistry RMSE E-Learning
KC #

E-Learning RMSE

Step 1 30 0.4281 22 0.3729

Step 2 43 0.4224 31 0.3716

Step 3 45 0.4244 38 0.3668

Expert 40 0.4273 40 0.3663

All 130 0.4989 135 0.5103

Single 1 0.4464 1 0.3874
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Table 12.3: Comparison of different KC models for Chemistry and E-Learning,
showing the number of KCs assigned to the 80 MCQs and their item-blocked

cross-validated RMSE.

12.4 Discussion
Our results demonstrate the potential of leveraging LLMs to generate and assign
high-quality KCs to educational questions. Specifically, in the undergraduate
Chemistry domain, we successfully matched more than half of the MCQs with
their corresponding KCs, and in the master’s E-Learning domain, we achieved a
match rate of one-third. For MCQs whose KCs were not directly matched by the
LLM, domain expert evaluations showed a two-thirds preference for
LLM-generated KCs over the existing human-generated alternatives. Additionally,
we introduced a novel clustering algorithm for grouping questions by their KCs in
the absence of explicit labels. These results propose a scalable solution for
generating and tagging KCs for questions in complex domains without the need
for pre-existing labels, student data, or contextual information.

The higher match rate for Chemistry compared to E-Learning can potentially
be traced back to the quality of the human-generated KCM. The Chemistry KCM
featured more specific KCs, each typically incorporating just a single piece of
domain-specific jargon, unlike the broader KCs with multiple terms found in the
ELearning KCM. Additionally, introductory Chemistry topics are likely to be more
prevalent in the LLM’s training data than the specialized E-Learning content,
which might have contributed to this discrepancy. Despite reasonable success in
identifying the top five KCs, the LLM faced difficulties in accurately selecting the
most appropriate KC. It often favors general options over precise and
domain-specific ones, potentially due to the presence of domain jargon. This led
to a substantial portion of MCQs in both domains, 21% in Chemistry and 38% in
E-Learning, not matching any of the top five KCs suggested by the LLM. These
results indicate that while LLMs are capable of surfacing relevant KCs, the
specific nature of domain jargon and a bias towards generalization can impede
the accurate identification of a KC.

We observed a notable and statistically significant (two-thirds) preference
for LLM-generated KC labels over human-generated ones in both domains. This
is possibly due to their slightly longer length and the enhanced readability
afforded by the LLM’s advanced next-word prediction capabilities. Given this
preference, it might suggest the importance of prioritizing human evaluative
feedback over direct matches with existing KCMs when assessing LLM
effectiveness in generating KCs, especially considering the subjective nature of
KC evaluations which can vary significantly based on the reviewer’s perspective
[134]. Another potential explanation may be that the original KCM designed by
the course authors was imperfect, containing KCs that did not fit the particular
MCQ or that were too broad. Interestingly, despite the inherent subjectivity in KC
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evaluation, all six reviewers in our study showed a preference for LLM labels.
These findings highlight a pronounced preference for LLM-generated KC labels
over human-generated ones across both domains. The higher preference for LLM
labels, along with the levels of agreement among evaluators, suggests that
LLM-generated labels could serve as an effective substitute for manually created
labels in categorizing MCQs by their KCs. This preference does not imply that
LLM-generated labels should completely replace human input; rather, they could
at least provide a valuable foundation, enabling human experts to further select
or refine the KCs identified by the LLM. This collaborative approach leverages the
strengths of both LLM capabilities and human expertise, potentially leading to
more accurate and universally acceptable KC categorizations.

When generating KCs for pairs of questions that assess the same KC, we
found that the LLM can assign labels with the correct semantic information, but
with different wordings (e.g., see Figure 4). To resolve these redundancies in the
KCM, we proposed and evaluated an algorithm that iteratively partitions the
question pool to generate KCMs of increasing granularity. The KC ontology
induced by this process is similar to taxonomies such as the Common Core State
Standards [194]which allow for the categorization of learning materials at
different levels of specificity (refer to Figure 7). For the Chemistry questions, we
observed that the KCM at the convergence of the algorithm is of similar
granularity as the expert model and most expert identified question pairs are
grouped correctly. For the E-Learning questions, the converged LLM-generated
KCM featured significantly more KCs than the expert model (63 vs 40) indicating
a higher granularity. Because of this, our evaluation metrics–which were
grounded in the expert KCM–assigned the LLM-generated KCM a low grouping
accuracy. Based on the human evaluation of human and LLM-generated KCs, this
might indicate that the expert KCM for the E-Learning course contains
inaccuracies and is of lower quality. Lastly, LLM induced KC ontologies might
support domain experts structure subject content and provide them with control
over the level of KC granularity that is most appropriate. After deciding on a set of
KCs the resulting taxonomy could provide a foundation for other types of
automated KC tagging algorithms (e.g. [78, 180, 182]).

Given the preference for LLM-generated KC labels observed in the human
evaluations across both domains, practitioners could consider using these labels
as initially provided. However, a more effective approach would involve
implementing a human-in-the loop system, where domain experts review and
confirm the appropriateness of these labels, creating their own alternatives if
necessary. Ideally, this process would start with the LLM generated labels being
preliminarily assigned to problems, followed by a verification step where experts
could either approve, modify, or replace them as needed. This process not only
ensures accuracy, but also significantly reduces the time and effort required
compared to starting from scratch. Ultimately, while the initial LLM-generated
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labels serve as an effective preliminary pass in developing a knowledge
component model, they should be seen as a foundation that can be further
refined based on expert insights and student performance data [94].

12.5 Limitations & Future Work
In our research, we introduced innovative methods for generating and grouping
KCs using a LLM. However, this approach is subject to certain limitations, such
as the opaque nature of LLMs, their susceptibility to unexpected output
variations, and the potential for biased results [190]. To address these challenges
and improve the reliability and efficiency of our methods, we employed a specific
iteration of GPT-4, accessed through the gpt-4-0125-preview API. This
strategy was designed to standardize the evaluation process and guarantee the
reproducibility of results by producing consistent outputs in response to
predefined prompts. Despite these efforts, the choice of wording in prompts
remains a critical factor, significantly affecting the model’s output due to LLMs’
inherent sensitivity to input nuances. Moreover, the process of evaluating KC
quality is complicated by human subjectivity, even among domain experts
following specific and detailed guidelines. The definition of a "good" KC is still not
clear-cut [116], as reflected in prior literature discussing the desired granularity,
making the evaluation process heavily dependent on individual judgment. Our
study’s scope was limited to two domains, restricted by the scarcity of suitable
datasets. Our attempts to use datasets similar to those in prior studies were
obstructed due to their unavailability for access. Additionally, niche domains may
exhibit poorer performance and higher inaccuracies due to their limited
representation in the LLM’s training data. For example, this limited representation
could explain the low agreement between the expert-created KCM and the
E-Learning KC ontology generated by the algorithm.

In future research, we aim to broaden the application of our methods to
questions from additional domains and various formats, such as short-answer
questions. We are interested in investigating the impact of different contexts,
such as instructional text provided before a question, on the quality of KCs
generated by LLMs. Our goal is to further refine the prompting strategies we have
developed and to foster collaboration among researchers and educators by
making our data and code publicly available. Additionally, we plan to explore the
potential benefits of utilizing different LLMs, which may enhance the results or
provide greater consistency, a notable challenge in current LLM education
research.

12.6 Conclusion
KCs are crucial for modeling student learning and empowering educational
technology with adaptivity and analytics. Therefore, simplifying and scaling the
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creation and association of KCs with educational content across various
domains is essential. In this context, our study suggests that LLMs can play a
significant role in facilitating this process. We developed a method to generate
KCs for assessment items relying solely on the questions’ context and
demonstrated its success with assessments from Chemistry and ELearning
courses. Our findings indicate that, although the direct matches between
LLM-generated and human-generated KCs were moderate, domain experts most
frequently preferred the LLM generated KCs for the assessments. To overcome
the challenge of categorizing assessments by their underlying KCs without labels
or context, we also introduced an algorithm for inducing KC ontology and
clustering assessments accordingly. Despite the subjectivity, time, and domain
expertise that is typically part of the KC mapping process, our approach
represents a step towards a scalable solution that addresses these challenges
across complex domains. Our research highlights the potential of LLMs to enable
individuals, regardless of their technical skills or domain knowledge, to contribute
to the development of Knowledge Component Models.
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Chapter 13
Discussion and Future work

This thesis presents methods of crowdsourcing, learnersourcing, and utilizing
NLP techniques to evaluate educational content and generate associated skills.
Through my research, I contribute practical approaches for incorporating
learnersourcing into classrooms, making it accessible to educators. I explored
multiple methods for skill tagging educational content in an automated and
scalable way. Additionally, I critically assessed human evaluation techniques for
educational content and demonstrated how rubrics can enhance the evaluation
process. Finally, I highlighted the limitations of existing question evaluation
methods and proposed a more effective alternative.

In the following sections, I reflect on the implications and lessons learned
from this research, and suggest avenues for further inquiry. My work aims to
contribute to ongoing discussions in these areas and provide practical insights
for future research.

13.1 Learnersourcing
Learnersourcing involves engaging students in the creation and evaluation of
educational resources, which can also enhance their learning. While dedicated
systems for learnersourcing exist, they are not always necessary to achieve
high-quality responses and strong participation rates. Even without these
systems, participation tends to be equitable and reflective of class
demographics. While the generation of new resources and course improvements
is valuable, it's essential to ensure that students retain autonomy and continue
learning throughout the process.

13.1.1 Effectiveness of Learnersourcing
Learnersourcing MCQs and SAQs in low-tech and low-stakes environments is
effective and easy to implement in most classes (chapters 3 & 4).
Learnersourcing systems are highly effective, and students routinely use them to
generate and evaluate a significant amount of educational content [168, 212].
However, even low-tech solutions like Google Forms with short answer text boxes
or ones preferred learning management system can be just as effective [162].
Students can create high quality output from learnersourcing activities that
involve the generation of MCQs, SAQs, hints, feedback, and skills using these
simple tools. Even without the affordances offered by learnersourcing systems,
such immediate feedback or advanced displays, students are fully capable of
contributing high-quality responses to these learnersourcing activities.
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It is important to consider lowering the barriers to participation and involving
more stakeholders, including instructors, in the learnersourcing process. The
entry barrier is quite low, and the benefits to student learning are substantial,
while also providing valuable resources to improve courseware. If an instructor is
already using a tool or ed-tech platform with short answer text boxes, they should
consider trying a learnersourcing activity. They might find improvements for their
course and discover something new, their students certainly will!

13.1.2 Equitable Participation
Confirms that equitable participation occurs in optional learnersourcing
environments, with high-quality contributions and active involvement (chapter
7). Learnersourcing systems are often used as required assignments within
courses, based on the assumption that optional activities would lead to low
participation and poor-quality contributions [156, 162, 213]. However, our work
has proven that this is not the case, as participation rates remain strong, and the
contributions include a diverse mix of high-quality responses [158, 159]. A
related, often overlooked aspect of research on learnersourcing or any optional
educational activity is identifying who may be choosing not to participate. Our
findings show that participation in our optional learnersourcing activities is
representative of the entire course demographic.

Future research on optional activities, whether they involve learnersourcing
or not, should consider reporting demographic information to ensure that no
group of students is being overlooked. This is important because every student’s
unique perspective can enhance the value of the activity and the resources
students contribute. This inclusion of diverse, novice perspectives is a key part of
what makes learnersourcing so valuable and innovative.

13.2 Skill Tagging
Skill tagging educational content often relies on a mix of student performance
data and human articulation, which can be a challenging and subjective process
to replicate at scale. Recent research has focused on using automated ML and
NLP methods for skill tagging, utilizing a wide variety of data sources. We
explored a scalable approach using crowdsourcing and learnersourcing, but this
proved to be less successful than existing methods and presented several
challenges. In response, we leveraged LLMs for a scalable and automated
method, and found this approach to be quite successful in the two domains we
tested. However, further testing is necessary to validate these findings across
more domains and against empirical student data.
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13.2.1 Necessity of Domain Expertise
Provides further evidence that skill tagging may require domain knowledge or
expertise, even with various scaffolding approaches (chapters 5 & 6). Previous
research states that skill tagging can be done through human methods, such as
Cognitive Task Analysis (CTA) performed on domain experts [26, 163]. Even
think-aloud protocols with novices can provide insights into the skills involved in
the problem solving process [203]. However, since these represent two different
levels of expertise, we explored what range of novices, through crowdsourcing
and learnersourcing, could accurately contribute to skill tagging if the task was
heavily scaffolded. While the results for both crowdsourced and learnersourced
approaches were less promising, there were some areas where they accurately
identified certain skills.

This led us to reconsider how we might utilize the crowd and students in this
process and how we could leverage the "knowledge" of LLMs to supplement or
complement their contributions. We believe this is a promising direction for
learnersourcing, particularly given its current success in areas like question
generation and hint generation [60, 214].

13.2.2 New Method for Skill Tagging
We developed a new method for knowledge component generation and skill
tagging for unlabeled multiple-choice questions (chapter 12). Building on our
prior work and advancements in ML and NLP-based methods, we hypothesized
that LLMs could offer an effective solution for skill tagging. Our findings
confirmed that LLMs provide a quick, scalable, and accurate way to generate skill
tags for higher education MCQs [166]. The process is straightforward, requiring
only a set of questions and a series of prompts, without the need for additional
context or metadata. Human evaluators favored the skill tags generated by LLMs,
finding them more readable, fine-grained, and easier to understand.

We believe this focus on human-readable labels is crucial for the skill tags,
yet often downplayed in previous research [21, 62]. While technical metrics like
AIC/BIC scores are important, in certain contexts, they are less meaningful if the
labels are not easily interpretable by instructors. For example, in a learning
dashboard, the usability of the labels may be more critical than marginal
improvements in model performance. This principle drives much of our current
work, as we aim to develop tools that are not only effective, but also practical for
instructors and learning engineers in classroom settings.

While we demonstrated success, further testing of this method is needed.
Future research should explore its effectiveness with other LLMs, across
different domains, and in empirical comparisons with existing models and
student data. We plan to integrate this approach into SAQUET, enabling not only
question evaluation, but also the generation of a set of hypothesized skills that
each question assesses.
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13.3 Human Expertise and Evaluation
In many research areas, particularly in NLP, human evaluation is considered the
gold standard. This is especially true for automated question generation, where
human evaluation has traditionally been the benchmark, often relying on the use
of subjective scales. To address the need for a more standardized and consistent
approach, we utilized the IWF rubric for MCQs and a 9-item rubric for SAQs. Our
goal was to develop a scalable method for human evaluation via a crowdsourcing
approach. We hypothesized that if the evaluation task was properly scaffolded
and guided by a clear rubric, crowdworkers could effectively assess question
quality. By standardizing the evaluation process, we aimed to create a more
consistent, reliable, and scalable method for evaluating the quality of educational
questions. This approach not only reduces subjectivity via verified rubric use, but
also makes it possible to scale.

13.3.1 Crowdsourced Content Assessment
Validates that crowds can effectively assess the quality of content using a
rubric (chapters 8 & 11). Providing the IWF rubric for MCQs and the 9-item rubric
for SAQs to the crowd allowed them to evaluate questions across various higher
education domains with a level of accuracy comparable to expert evaluation
[155, 165]. Remarkably, even without domain-specific knowledge and potentially
limited understanding of the content, the crowd could accurately apply these
rubrics. However, setting up these crowdsourcing tasks proved to be
time-consuming and not cost-efficient, which limited the scalability of this
approach. Despite these challenges, the initial success demonstrated by the
crowd suggests that this is a promising area for further exploration. Future
research could focus on engaging more advanced crowdworkers and potentially
enhancing their workflows with LLMs or other innovative methods to improve
efficiency and scalability.

13.3.2 Advanced Domain Knowledge in Evaluations
Suggests that while students or non-experts can sometimes conduct
evaluations, advanced domain knowledge may be necessary, potentially
provided by LLMs (chapters 8 & 11). While we achieved promising results with
minimal crowdsourcing filters when applying the IWF rubric to MCQs, our
success was more limited with SAQs. When comparing the performance of LLMs
to that of the crowd, we found that a more advanced crowd, specifically
individuals with bachelor’s degrees in the relevant domain recruited via Prolific,
achieved the highest accuracy in applying the rubrics.

This suggests that human evaluation, particularly by individuals with
domain-specific knowledge, remains as one of the most comprehensive methods
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for question evaluation. Leveraging a knowledgeable crowd can lead to superior
results across both MCQs and SAQ, highlighting the importance of expertise in
the evaluation process.

13.3.3 Human-AI Hybrid Evaluation
Introduces a human-AI hybrid approach for the evaluation of questions (chapter
11). Building on our prior crowdsourcing work for content generation and
evaluation, we recommend a hybrid approach that leverages both LLMs and
human expertise. In this approach, LLMs would handle the simpler rubric criteria
where they have demonstrated high accuracy, while humans, through
crowdsourcing, learnersourcing, or other methods, would focus on the more
complex criteria that still require human judgment. Drawing from prior research,
this approach could involve LLMs taking an initial pass at the evaluation, with
humans subsequently reviewing and either accepting or rejecting the LLM’s
recommendations [108]. This method has the potential to streamline the
evaluation process, enhancing scalability without sacrificing quality.

The growing trend of human-AI hybrid applications, where LLMs and humans
collaborate to refine outputs, supports the viability of this approach [60, 214]. In
the context of question evaluation and generation, this method not only produces
high-quality results but also promotes student learning, as demonstrated by
previous studies [215].

13.4 Question Quality and Evaluation
Crowdsourcing, learnersourcing, and human-AI hybrid approaches all show
potential for evaluating the quality of educational questions. However, we aimed
to develop a fully automated, scalable method that goes beyond surface-level
analysis and is grounded in learning sciences research. Our goal was to create a
domain-independent approach that leverages not only LLMs, but also existing
NLP techniques. Much of the existing literature on question evaluation relies on
subjective assessments that are difficult to replicate, and the commonly used
automated metrics were not originally designed to assess question quality,
particularly in educational contexts. We set out to test these existing metrics and
propose our own, offering a robust solution that can be applied to both new and
existing questions by any user, regardless of their expertise.

13.4.1 Ineffectiveness of Existing Methods
Provides proof that commonly used methods for evaluating educational
multiple-choice questions are inadequate (chapter 10). We applied five
commonly used metrics for evaluating question quality to our dataset of MCQs
tagged with the IWF criteria [154]. We found that questions with clear flaws
sometimes scored better than flawless questions according to these metrics.
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This outcome was not entirely unexpected, as these metrics primarily focus on
aspects like word choice, readability, and reading level. For example, a question
might score high in lexical diversity due to its use of unique and complex words,
yet still contain implausible distractors, making it less effective as an
assessment tool.

We do not fault researchers and practitioners for relying on these metrics, as
they are among the few automated options available [170]. However, our findings
make it clear that these metrics do not effectively distinguish between low and
high-quality questions in educational contexts. This realization led us to pursue a
method grounded in learning sciences, one that relies on proven tools like the
IWF rubric, while also introducing the standardization necessary for a reliable
evaluative metric. Although our approach is not the only possible solution, as
there are other rubrics and methods that can be used to evaluate question
quality, it is crucial that any metric be specifically tailored for educational
assessments. Such a metric must consider how questions will be used with
students who are actively learning and possess their own test-taking strategies
and abilities.

13.4.2 New Method for MCQ Evaluation
Proposes a new method for the evaluation of educational multiple-choice
questions (chapters 9 & 10). While still in development, we deployed and utilized
the Scalable Automatic Question Usability Evaluation Toolkit (SAQUET), which
demonstrated expert-level accuracy in applying the 19-criteria IWF rubric to
higher education questions across various domains. Initially, SAQUET was purely
rule-based (see chapter 9), utilizing a variety of NLP methods without
incorporating LLMs. However, it has since evolved into a hybrid approach that
integrates LLMs to handle cases where rule-based methods struggle to make
confident decisions.

SAQUET is user-friendly and specifically designed to assess the quality of
MCQs in terms of their pedagogical effectiveness. Our goal is to continue
developing SAQUET into a comprehensive tool that allows users to quickly
upload or create questions, receive a full evaluation, and even generate skill tags
based on the work presented in chapter 11. We also envision users contributing
back to SAQUET, as it is open-source, enhancing the methods and improving the
accuracy and richness of its evaluations. There are still areas in question
evaluation that require further research, such as ensuring alignment with learning
objectives and associated content. As SAQUET evolves, addressing these
aspects will be crucial to its success and utility in educational settings.
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13.5 Future Directions
For future work, we intended to provide further empirical and data-driven
evidence that these methods, both the skill tagging approach and SAQUET, are
effective. We plan to continue testing across different domains using real student
data to validate and refine our techniques, comparing our evaluation against
data-driven approaches such as those from IRT. In areas where LLMs are utilized,
we will focus on improving prompts with the assistance of collaborators and
experimenting with different models as they evolve. We invite educators,
researchers, and practitioners to engage with our work by offering their insights
and improvements to further refine the criteria, as we have done. This form of
collaboration would contribute to developing a more educationally robust metric
enriched by collective expertise, while also providing invaluable feedback on the
usability of the methods. Finally, building on our recent work, we aim to construct
a tool that offers feedback from SAQUET and provides skill tag suggestions for
MCQs. Eventually, we plan to expand these methods beyond MCQs to include
other forms of assessment, such as SAQs, and even instructional content.

13.5.1 Actionable Improvements
Currently, SAQUET identifies potential flaws in the provided MCQs, but does not
offer feedback on how to rectify them. As a next step, we plan to leverage LLMs,
even for criteria that are purely rule-based, to provide feedback and make
corrections directly to the MCQs. In early testing, we applied SAQUET to
questions from university-level Chemistry and Statistics courses, generating
reports that identified specific flaws in each question. Instructors for the
respective courses then made quick corrections based on these reports.
Examples of improved Chemistry and Statistics questions can be seen in Figures
13.1 and 13.2, respectively.

What are the subatomic particles known as
protons?
A) Positively charged subatomic

particles.

B) Sum of electrons and neutrons.

C) Negative subatomic particles

D) Discovered by Ernest Rutherford.

What is the charge of subatomic particles known as
protons?
A) Positive.

B) Neutral.

C) Negative.

D) The combined charge of electrons and
neutrons

Figure 13.1: On the left, a chemistry question with four IWFs: grammatical cue,
convergence cue, logical cue, and implausible distractor. The improved version,

revised by an instructor, is shown on the right.
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What is the difference between the z-test and the
t-test for the population mean?

A) We use the sample standard deviation s
instead of the unknown population
standard deviation σ

B) We use the sample standard deviation σ
instead of the unknown population
standard deviation s

C) We use the unknown population standard
deviation s instead of the sample
standard deviation σ

D) There is not a difference.

What is the main difference between the z-test
and the t-test for a population mean?

A) The t-test uses the sample standard
deviation s instead of the known population
standard deviation σ.

B) The t-test uses the sample standard
deviation σ instead of the known
population standard deviation s.

C) The t-test uses the known population
standard deviation s instead of the sample
standard deviation σ.

D) There is no difference between the z-test
and the t-test.

Figure 13.2: On the left, a statistics question with three IWFs: convergence cue,
grammatical cue, and implausible distractor. The improved version, revised by an

instructor, is shown on the right.

This feedback has proven effective in informing instructors, learning engineers,
and instructional designers about potential flaws in the questions they create.
However, to further enhance efficiency and question quality, we are working on
having an LLM make the corrections automatically. While the system will still
report the identified flaws and clearly outline the changes made to address them,
allowing users to approve or reject the changes may streamline the process
compared to making the revisions themselves.

13.5.2 Item-Response Theory
Much of the work in verifying the efficacy of SAQUET has relied on qualitative
evaluations by domain experts, which, even with the use of a rubric, can introduce
some subjectivity. To move toward more objective, data-driven approaches, we
have recently begun exploring how different item flaws may relate to item
difficulty and the prediction of item discrimination, using IRT. Item difficulty refers
to the probability that a given test item will be answered correctly, with higher
values indicating more challenging questions. Item discrimination measures how
well an item differentiates between students of varying ability levels, with higher
discrimination indicating that the item is more effective at distinguishing
between high and low performers.

In our initial exploration, we used data from thousands of students working
through STEM courses from a popular online learning platform. We found that
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some flaws, such as logical cues and complex or k-type options, were positively
correlated with item difficulty, making questions harder. On the other hand, flaws
like all of the above and longest answer correct were negatively correlated with
difficulty, indicating they tend to make the questions easier.
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Chapter 14
Conclusion

The rapid generation of educational content through crowdsourcing,
learnersourcing, and generative AI offers significant potential. However, it often
overlooks critical metadata, such as the specific skills being assessed by each
question. Additionally, the evaluation techniques currently employed to ensure
the quality of such content are inadequate and lack standardization. In my
dissertation, I address these challenges by combining insights from
Human-Computer Interaction and Learning Sciences, taking significant steps
toward improving the quality of the educational content we give students.

My research began with an exploration of educational content creation
through learnersourcing in low-stakes and low-technology environments. The
findings demonstrate that high-quality educational content can be generated
without the need for complex systems, and equitable participation is possible
when students are empowered to make choices in the process. In the area of skill
tagging, I explored human-in-the-loop methods that varied in domain knowledge
and expertise, utilizing both crowdsourcing and learnersourcing. To address the
shortcomings identified, I proposed new approaches that leverage LLMs to
enhance the accuracy and efficiency of skill tagging content.

In both the creation and evaluation processes of educational content, I
further examined the role of subject matter proficiency. My findings suggest that
a hybrid approach, combining human insight with automated tools, could
enhance these processes and scaffold the knowledge required. Current widely
used evaluation methods often fall short of ensuring educational content quality
and reliability, leading me to propose a new automated method that addresses
these shortcomings, known as SAQUET. This new approach remains automated
and scalable, while also focusing on the pedagogical aspects of the content.

This dissertation advocates for the development of mixed-initiative
approaches that combine user input, whether from students, crowds, or domain
experts, with generative AI capabilities to evaluate and create educational
content. These interventions, along with future ones, should be designed to
integrate seamlessly into existing digital courseware, ensuring accessibility
without requiring complex systems or specialized knowledge. By leveraging
existing learning science work and enhancing standardization,we can create
educational technologies and content that are not only effective but also widely
usable by instructors and learning engineers. Looking ahead, it is crucial to
maintain the integration of proven learning science methods at the core of
educational technology and interventions, especially in the area of human-AI
collaboration. Ultimately, the goal is to continually improve learning outcomes for
students.
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