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ABSTRACT 

Knowledge Components (KCs) linked to assessments enhance the 
measurement of student learning, enrich analytics, and facilitate 
adaptivity. However, generating and linking KCs to assessment 
items requires significant effort and domain-specific knowledge. 
To streamline this process for higher-education courses, we 
employed GPT-4 to generate KCs for multiple-choice questions 
(MCQs) in Chemistry and E-Learning. We analyzed discrepancies 
between the KCs generated by the Large Language Model (LLM) 
and those made by humans through evaluation from three domain 
experts in each subject area. This evaluation aimed to determine 
whether, in instances of non-matching KCs, evaluators showed a 
preference for the LLM-generated KCs over their human-created 
counterparts. We also developed an ontology induction algorithm 
to cluster questions that assess similar KCs based on their content. 
Our most effective LLM strategy accurately matched KCs for 56% 
of Chemistry and 35% of E-Learning MCQs, with even higher 
success when considering the top five KC suggestions. Human 
evaluators favored LLM-generated KCs, choosing them over 
human-assigned ones approximately two-thirds of the time, a 
preference that was statistically significant across both domains. 
Our clustering algorithm successfully grouped questions by their 
underlying KCs without needing explicit labels or contextual 
information. This research advances the automation of KC 
generation and classification for assessment items, alleviating the 
need for student data or predefined KC labels. 
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1 INTRODUCTION 

Digital learning platforms, such as MOOCs and interactive online 
courses, facilitate the mapping of assessments to specific skills or 
competencies, referred to as Knowledge Components (KCs). These 
KCs are instrumental in driving learning analytics systems, 
enabling adaptive content sequencing, and providing precise 
estimates of student mastery levels [7,9,16]. KCs embody the 
cognitive functions or structures inferred from student 
performance on related assessments and are more nuanced and 
fine-grained than broad course learning objectives [17]. The 
process of associating assessments with KCs, often referred to as 
skill or concept tagging, generates a comprehensive map of the 
knowledge conveyed by the platform or course. This mapping, 
termed Knowledge Component Model (KCM), is crucial for closely 
monitoring student learning, allowing educators to identify 
precisely which concepts a student may find challenging based on 
their assessment performance [39]. Without an accurate KCM, the 
effectiveness of assessing mastery and implementing adaptive 
learning strategies may be significantly hindered [35]. 
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While KCMs offer numerous benefits for digital learning 
platforms, the creation of KCs for each assessment is a time-
intensive process that demands domain expertise. This usually 
requires a domain expert, such as the course instructor, to 
determine the necessary KCs for solving each assessment [11]. 
This process necessitates the identification of at least one KC per 
assessment item and can involve identifying up to three or more 
KCs, depending on the complexity of the assessment, the subject 
area, and the educational level [8]. Modifying existing KC tags is 
equally challenging; although evaluating the effectiveness of 
KCMs is feasible, adjusting it can be as time-consuming as the 
initial creation process. Evaluation methods such as learning curve 
analysis and statistical measures such as Akaike Information 
Criterion (AIC) can provide insights into the effectiveness of the 
KCMs [18]. However, these methods often require large amounts 
of data to produce reliable results, and primarily focus on the fit 
and predictive accuracy of the model, potentially overlooking the 
contextual and practical applicability of the KCs in diverse 
educational environments. The continual evaluation and updating 
of these models remain critical, as many learning platforms in the 
United States have begun transitioning to common taxonomies, 
like the Common Core State Standards, necessitating the re-
tagging of content or the alignment of existing mappings with 
these standards [40]. This re-mapping is not only labor-intensive 
but also needs to be revisited with each update or change to the 
common standards, adding to the ongoing workload. 

To mitigate the challenges associated with mapping KCs to 
assessments, a variety of automated solutions employing machine 
learning (ML) and natural language processing (NLP) have been 
proposed [13,34]. These approaches primarily employ 
classification algorithms, using an existing repository of KCs as 
reference labels for mapping. However, one critical limitation of 
these techniques is their reliance on a predefined set of KCs. They 
are not designed to identify new KCs, but instead depend on a pool 
of KCs, which may not always be available. The difficulty of 
automatically generating new KCs lies in ensuring their specificity 
and relevance to the problem at hand, their relationship with other 
KCs, and their alignment with the overall course content [47]. 
Consequently, while the challenge of associating assessments with 
existing KCs is significant, the task is further complicated by the 
initial requirement to generate these KCs, a step that previous 
efforts often overlook. When previous studies involve KC 
generation, they are frequently unlabeled, necessitating a human 
to create their descriptive text labels [5,9]. 

Recent advancements in large language models (LLMs) have 
shown promise in automating the generation and tagging of 
metadata to educational content [41]. To explore this possibility in 
the context of KCs, we utilize datasets from two different domains: 
Chemistry and E-Learning, encompassing the higher-education 
levels of undergraduate and masters. The respective datasets 
contain multiple-choice questions (MCQs), with each question 
mapped to a single KC. We leverage GPT-4 [31], a state-of-the-art 
LLM, to generate a KC for each MCQ by employing two distinct 
prompting strategies, based solely on the text of the MCQs. We 
then compare LLM-generated KCs to the original human-assigned 
ones, which serve as our gold standard labels. For KCs that did not 

match, we had groups of three human domain experts evaluate the 
discrepancies to determine their preferred KCs, which often leaned 
towards the ones generated by the LLM. Additionally, to organize 
the KCs, we implement a clustering algorithm that leverages the 
content of the MCQs to group questions that assess the same KCs. 
Our research presents a methodology that automates the process 
of generating and tagging KCs to problems across various 
domains, relying exclusively on the text of the assessments. 

The main contributions of this work are: 1) A proposed method 
for generating KCs for assessments using LLMs, 2) Empirical and 
human validation of the LLM-generated KCs, and 3) A technique 
that iteratively induces a KC ontology and that clusters 
assessments accordingly. 

2 RELATED WORK 

2.1 Knowledge Component Models 

A Knowledge Component Model (KCM) acts as a foundational 
framework in education, particularly in digital learning, to 
systematically organize and define the KCs students are expected 
to acquire [39]. KCs are generally characterized by their detailed 
and fine-grained nature, yet they can be modeled at various levels 
of granularity. The Knowledge-Learning-Instruction (KLI) 
Framework provides flexibility in determining the specificity with 
which KCs are defined [17]. However, the primary objective of a 
KCM is to elucidate the relationships among these KCs and how 
they connect to assessments or learning activities in an 
educational program or course. A KCM enables the monitoring of 
student progress, the prediction of learning outcomes, and the 
identification of effective teaching strategies through learning 
analytics [15]. Additionally, KCMs underpin adaptive learning 
systems, which tailor the content, difficulty level, and pacing 
according to the learner’s mastery of the KCs, thereby seeking to 
enhance learning efficiency and outcomes [14]. 

Validation of successful KCMs traditionally relies on a mix of 
automated and manual metrics such as Learning Curve Analysis 
(LCA) and Item Response Theory (IRT), or evaluations by human 
domain experts [1]. The former automated methods are robust and 
objective indicators of a KCM’s validity, but they require student 
performance data on the assessments. For example, LCA visualizes 
students’ performance over time or across learning opportunities, 
where a well-validated KCM shows consistent improvement as 
students engage with KC-aligned content [26]. Discrepancies, such 
as sudden leaps or plateaus, may suggest the need for model 
refinement. IRT models further validate KCMs by examining the 
relationship between students’ latent traits, like mastery of KCs, 
and their performance on specific assessments, expecting a strong 
correlation between KC mastery and correct responses [46]. On 
the other hand, human evaluation involving domain experts’ 
review of the KCM is a commonly used qualitative method that 
involves more subjectivity but does not require student 
performance data [24]. Properly validated KCMs enhance adaptive 
learning systems and analytical tools, allowing for more accurate 
measurement of student mastery, while also offering valuable 
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insights into potential areas for improvement within the 
instructional design process [22]. 

2.2 Human KCM Generation 

Traditional approaches to generating KCMs involve manual 
processes, rooted in either theoretical or empirical task analysis 
[25]. Theoretical methods require the domain expert to 
meticulously examine a range of activities and instructional 
materials to identify the knowledge requirements of the task [7]. 
This process can be supported by tools (i.e. CTAT [48]) or 
frameworks (i.e. EAKT [37]), that can facilitate the identification of 
different problem-solving steps and the associated KCs that 
learners must possess. Although technology can aid in this 
process, it is not strictly necessary; the task can also be 
accomplished using simple methods like pencil and paper to note 
down the KCs hypothesized to be assessed by an activity. On the 
empirical side, authors gather data on problem-solving within a 
specific task domain through methods like contextual inquiry, 
think-aloud protocols, and cognitive task analysis (CTA) [3]. In 
particular, CTA typically involves instructional designers or 
learning engineers prompting domain experts to explain their 
thought processes while engaging in a series of tasks. This 
approach helps in uncovering the underlying KCs that are 
essential for task performance. 

Human-generated KCMs are pivotal in the deployment of 
various educational technologies, yet their creation presents 
multiple challenges. The process, whether theoretical or empirical, 
is time-consuming, demands domain expertise, and often 
necessitates collaboration between multiple individuals, thereby 
introducing additional logistical complexities [1]. Even commonly 
used methods, such as CTA, are susceptible to the issues of human 
subjectivity and expert blind spots [29]. These issues can lead to 
potential oversights or overly generalized interpretations of KCs, 
resulting in omissions or inaccurately defined KCs that fail to 
address common novice pitfalls. Moreover, the reliance on 
specialized human knowledge significantly complicates the scaling 
of these methods. Recent endeavors have explored crowdsourcing 
to harness scalable human judgment for tagging Math and English 
writing problems with KCs [28]. However, their findings indicate 
that crowdworkers often struggle to achieve the level of specificity 
required for accurately defining KCs, highlighting a critical gap 
between the need for detailed knowledge articulation and the 
capabilities of human contributions. 

2.3 Automated KCM Generation 

The growing limitations of manual KCM construction, which 
relies exclusively on human input, underscore the need for more 
effective approaches, as manual methods often demand significant 
resources and time. Automated approaches for generating KCMs 
have emerged as valuable tools that can enhance, rather than 
replace, human efforts [4]. These methods employ data-driven 
approaches, like Learning Factors Analysis (LFA) and Q-matrix 
inspection, to categorize questions under existing KCs within a 
predefined search space in educational software [5,9,44]. They do 
not create new KCs, but rather assign questions to the already 

defined ones. Notably, models developed or improved through 
automated or semi-automated techniques frequently surpass their 
manually constructed counterparts, especially in predicting 
student performance [1]. For example, evidence from previous 
research shows that a KCM refined through a combination of 
human judgment and automated methods can enable students to 
achieve mastery 26% faster [18]. 

Automated approaches for generating KCMs that operate 
largely without human intervention typically follow two main 
strategies: generation or classification [30]. In terms of generation, 
significant efforts focus on creating knowledge graphs or 
extracting concepts from digital textbooks, in addition to deriving 
KCs from student performance data [10], for example via matrix 
factorization [6,12] and VAE-based methods [32]. However, these 
methods often face challenges related to interpretability, not only 
due to the opaque nature of the algorithms used, but also because 
the generated labels may not hold meaningful insights for 
educators [43]. On the classification front, the goal is to assign 
existing KCs to problems based on semantic information contained 
in the assessment text, a process that has proven effective in 
domains like Math and Science [36,45]. However, for areas 
without a well-defined standard or an established bank of KCs, 
such as those outside the common core standards, this 
classification approach presents a significant challenge due to the 
absence of predefined labels for categorization [20]. Another 
related problem is establishing the equivalence of individual KCs 
across different learning platforms which often use varying 
nomenclature to refer to the same learning objectives. Prior work 
explored the application of machine translation techniques that 
consider assessment context and textual content to identify 
equivalent KC pairings [21]. 

3 METHODS 

3.1 Datasets 

In this study, we utilized two datasets from higher education 
MOOCs: one in Chemistry and the other in E-Learning. Each 
dataset comprises 80 multiple-choice questions (MCQs), with each 
question offering between two to four answer options. These 
datasets are structured such that each KC is represented by exactly 
two MCQs, totaling 40 KCs in each dataset. The ground truth KCs 
associated with each question were previously identified by 
domain experts who contributed to developing the content and 
authoring the courses. A key selection criterion for these questions 
was that each should be associated with a single KC, ensuring 
clarity in mapping. 

The Chemistry dataset 1  originates from an online course 
adopted by various universities across the United States as 
instructional materials for an undergraduate introductory 
Chemistry course. This content is hosted on a widely used digital 
learning platform and is often integrated into a flipped-classroom 
model, supplementing in-person instruction. Similarly, the E-

 
1 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=4640 
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Learning dataset2 is derived from a master’s level course at a 
university in the eastern United States, utilizing the same digital 
platform for implementation. Both datasets and the code utilized in 
this study are available for inspection3. 

3.2 Prompting Strategies 

To automatically generate KCs, our research employed the gpt-
4-0125-preview4 API, chosen for its speed, reduced cost, and 
the consistency it offers. This decision was made to avoid the 
variability that might arise from continuous updates to the 
standard GPT-4 API, which could impact the reproducibility of our 
results. Following recommendations from existing literature [2,38], 
we developed two prompting strategies to generate the KCs for 
each question: the simulated expert approach and the simulated 
textbook approach. For both strategies, the only contextual 
information provided to the language model was the course’s 
educational level (undergraduate or master’s) and the subject area 
(Chemistry or E-Learning). For each approach we supplied a MCQ, 
which included the question text, the correct answer, and the 
alternative options. This choice was motivated by our aim to 
develop a method that could be generalized, recognizing that 
providing extensive contextual information might not always be 
feasible for certain question banks or assessment content. This is 
also aligned with previous research that has attempted to generate 
KCs based solely on the content’s text using automated NLP-based 
approaches [27,42]. The exact prompts used for the simulated 
expert strategy are illustrated in Figure 1 and the prompts for the 
simulated textbook strategy are in Figure 2. 
 
“““Simulate three experts collaboratively evaluating a 

college level multiple-choice question to determine 

what knowledge components and skills it assesses. The 

three experts are brilliant, logical, detail-oriented, 

nit-picky {subject} teachers. The multiple-choice 

question is used as a low-stakes assessment as part of 

an {context} {subject} course that covers similar 

content. Each person verbosely explains their thought 

process in real-time, considering the prior 

explanations of others and openly acknowledging 

mistakes. At each step, whenever possible, each expert 

refines and builds upon the thoughts of others, 

acknowledging their contributions. They continue until 

there is a definitive list of five knowledge and 

skills required to solve the question, keeping in mind 

that the question is for a college audience with 

existing prior knowledge. Once all of the experts are 

done reasoning, share an agreed conclusion. 

 

Question text: {question_text} 

Correct answer: {answer_text}””” 

 

“““Based on the reasoning from these three experts and 

their conclusion, reword these five points to begin 

with action words from Bloom’s Revised Taxonomy. 

Reasonings: {reasonings}””” 

 

 
2 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=5843 
3 https://github.com/StevenJamesMoore/LearningAtScale24 
4 https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo 

“““Reasonings: {reasonings} 

Five points: {points} 

 

Of these five points, which one is the most relevant 

to the question?””” 

Figure 1: Three prompts used for the simulated expert 
prompting strategy for KC generation. 

“““Below there is a multiple-choice question intended 

for a {context} audience with existing prior knowledge 

on the subject of {subject}. The question is used as a 

low-stakes assessment as part of an {context} 

{subject} course that covers similar content. The 

first answer choice, option A), is the correct answer. 

If this question was presented in a textbook for an 

{context} {subject} course, what five domain-specific 

low-level detailed topics would the page cover? Note 

that the question is for a college audience with 

existing prior knowledge in {subject}. 

 

Question text: {question_text} 

{options_text}””” 

 

"Based on these topics, reword them to begin with 

action words from Bloom’s Revised Taxonomy, while 

keeping them domain-specific, low-level, and 

detailed." 

 

"Of these topics, which is the most relevant to the 

question?" 

Figure 2: Three prompts used for the simulated textbook 
prompting strategy for KC generation. 

In the first prompting strategy following the simulated expert 
approach, we employed the tree-of-thought technique, directing 
the LLM to emulate a discussion among three expert instructors 
[23]. The objective was to identify five specific, detailed skills and 
knowledge assessed by the provided MCQ. After this simulated 
discussion, the experts were expected to produce a list of the key 
skills they deemed necessary for answering the question. 
Subsequently, we introduced a prompt that instructed the LLM to 
refine the language of this list, aligning it with the verbs typically 
used in Bloom’s Revised Taxonomy [19]. This step was 
deliberately conducted after the initial list creation to avoid 
predisposing the selection of certain verbs, which we found 
reduced the quality of the labels during pilot testing. For instance, 
without this step, the experts would typically always suggest skills 
around the words of “understand”, “apply”, and “analyze” as they 
tried to strictly adhere to these levels of Bloom’s Revised 
Taxonomy. Finally, leveraging the insights from the discussion, 
the refined list of skills and knowledge aligned with Bloom’s 
Taxonomy, and the MCQ itself, the last prompt required the LLM 
to select the skills or knowledge most pertinent to the question at 
hand. 

Our second prompting strategy, simulated textbook, drew 
inspiration from recent advancements in the creation of 
knowledge graphs, which frequently employ digital textbooks as a 
foundational source [10,47]. These methods leverage structural 
elements like text headers or textbook indexes to outline the initial 
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framework of the graph. Mirroring the expert approach, this 
strategy contextualizes the task around a MCQ as it might appear 
in a textbook. The LLM was tasked with identifying the specific, 
detailed topics a textbook page would cover if it included the given 
MCQ. Following this, a subsequent prompt directed the LLM to 
refine these topics, utilizing the language and verb categories 
found in Bloom’s Revised Taxonomy [19]. The final step involved 
selecting the topic most relevant to the MCQ, ensuring that the 
identified knowledge areas were directly applicable to the 
question’s context. 

3.3 Human Evaluation 

To benchmark this work, we initially compared the original KC 
tags, which were manually generated by the course creators, to 
those generated by the LLM. This comparison provided a baseline 
matching metric for each of the two prompting strategies across 
both domains. Beyond this direct match metric, our analysis 
extended to evaluating the outcomes of the second prompt within 
each prompting strategy. For both prompting strategies, this 
second prompt generates a list of the top five potential KCs for a 
MCQ, as identified by the LLM. This top five list was created with 
the intention of presenting it to an expert for selection, as part of 
potential future work. We considered it a partial success when the 
original manually generated KC tag appeared within this top five 
list, for either of the strategies. This occurrence was documented 
as a secondary, albeit less precise, metric of matching accuracy. 

Recognizing that manually created KCMs can have issues, such 
as incorrect labeling or wording that misrepresents the required 
knowledge or skills, we implemented a secondary human 
evaluation. This aimed to assess the preference between LLM-
generated KCs and the original human-generated KCs, specifically 
for instances of mismatch. This secondary evaluation was only 
done for the mismatches from the simulated textbook strategy, as 
that had the highest matching percent to the original KC labels 
across both domains. For example, in a Chemistry MCQ, the 
human-generated KC was labeled "Use Gay Lussac’s law" whereas 
the LLM-generated KC was “Understand gas pressure-temperature 
relationship". Given this discrepancy, we asked multiple human 
evaluators to choose which KC they believed more accurately 
matched the MCQ. 

For this evaluation, we enlisted three domain experts in 
Chemistry and three in E-Learning. In the case of Chemistry, 
experts holding a bachelor’s degree in Chemistry from the United 
States were recruited through Prolific, an online research platform 
[33]. These experts were given a survey implemented via Google 
Forms that tasked them with reviewing a series of MCQs 
accompanied by two KC labels. They were instructed to select the 
label that best matched a set of predefined KC criteria aligned with 
the KLI framework [17]. These criteria emphasized clarity, direct 
relevance to the subject matter, factual accuracy, and the ability to 
apply or integrate the knowledge into broader contexts or 
practical situations. Specifically, for the 35 MCQs identified as 
mismatches from the simulated textbook strategy in Chemistry, 
experts evaluated which of the two labels best met these criteria in 
relation to the MCQ. On average the task took roughly 28 minutes 
and participants received a compensation of $10. 

The same procedure was applied to the E-Learning dataset, 
adhering to identical instructions and task formats as used for 
Chemistry. However, the three domain experts involved in this 
evaluation were instructional staff who had both participated in 
the E-Learning course and contributed to its development yet had 
not participated in the original creation of the KCM. For the E-
Learning dataset, there were 52 MCQs identified as mismatches 
based on the simulated textbook strategy. On average the task took 
roughly 32 minutes and participants received a compensation of 
$15.   

An example of a Chemistry and E-Learning question used in 
both tasks can be seen in Figure 3. To ensure objectivity, the 
sequence of questions and the presentation order of the two labels 
for each question were randomized for each expert. To address the 
issue of LLM-generated KC labels being more verbose than their 
human-generated counterparts, we utilized the gpt-4-0125-
preview API to refine these labels for clarity and brevity. We 
issued a prompt directing the LLM to rephrase each KC, ensuring 
the revised length did not exceed 1.5 times the word count of the 
corresponding human-generated KC. For example, a human-
generated KC consisting of ten words would result in an LLM-
revised KC limited to a maximum of fifteen words. This approach 
was implemented to equalize the articulation level across labels 
and align with the typically concise format of KC labels. The 
preferred label was determined based on a majority vote, where at 
least two out of three experts had to agree on the choice. This 
methodological approach aimed to rigorously assess the 
comparative quality and applicability of LLM-generated KCs 
against those originally crafted by humans. 

 

 

Figure 3: A Chemistry MCQ (top) and E-Learning MCQ 
(bottom) used in this study. 

3.4 Generating KC Ontologies 

The prompting strategies described above can be employed to 
generate KCs for each individual question. One limitation of this 
methodology is that two questions that assess the same KC can 
receive LLM-generated labels that both contain the correct 
semantic information, but that feature two different wordings, as 
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seen in Figure 4. Thus, the resulting KCM might contain 
redundancies which need to be resolved before using the KCM for 
purposes of assessing students’ KC mastery or problem 
sequencing. 
 

 

Figure 4: Two Chemistry MCQs targeting the same KC, with 
slight wording variations by the LLM. 

 
 
To promote alignment between the generated KCs, we propose an 
algorithm that induces an ontology of KCs of increasing 
granularity by iteratively partitioning the question pool into 
multiple groups. The overall algorithm is presented in Algorithm 
1. The algorithm employs two prompts–shown in Figure 5–
fulfilling two distinct tasks: (i) Determine a set of learning 
objectives that can be used to partition the question pool; (ii) 
Assign each question to one of the learning objectives to form 
groupings. After grouping the questions, the algorithm uses 
recursion and continues partitioning the individual subgroups 
until the LLM learning objectives are of finer granularity or until a 
group only contains a single question. We phrase the task of 
identifying KCs as determining fine grained learning objectives to 
be more aligned with common language. While it seems tempting 
to directly employ the partitioning induced by the first prompt, we 
noticed that when working with large questions list (e.g., >50) 

GPT-4 can fail to execute the instructions correctly either omitting 
questions in the assignment process or by assigning the same 
question to multiple groups. Having an explicit classification 
prompt that assigns each question to the most relevant group 
resolves this issue. 
 
DETERMINE KCs PROMPT “““Below there is a list of 

questions and answers intended for a {context} 

audience with existing prior knowledge on the subject 

of {subject}. You are an educator who sorts the 

questions based on learning objectives into groups. 

Ensure that each question belongs to EXACTLY one group 

(not more or less). 

 

Question List: 

{question_list} 

 

Use the following output format: 

Group 1 name: [learning objective] 

Group 1 questions: [Q1_1, ..., Q1_j] 

... 

Group N name: [learning objective] 

Group N questions: [QN_1, Q_N_k]“““ 

 

CLASSIFY QUESTION PROMPT “““Below there is a question, 

its answer, and a list of learning objectives. You are 

a {subject} educator that determines the learning 

objective that is most relevant to the question. 

 

Question: {question} 

 

Learning Objectives: 

{objectives} 

 

Use the following output format: 

Most relevant Objective: [OBJECTIVE NUMBER]“““ 

Figure 5: Two prompts are used to determine appropriate 
learning objectives and then to classify the individual 
questions. 

The iterative partitioning of questions induces an ontology of KCs 
of increasing levels of granularity. The expert can then decide 
which level of granularity is most suitable for their application. In 
this work, we employ the expert labeled datasets to evaluate the 
quality of our groups. Each dataset features a set of KCs denoted 𝐾 
and a set of questions denoted as 𝑄. By design each 𝑘 ∈ 𝐾 is 
associated with two questions 𝑞𝑘,1, 𝑞𝑘,2 ∈ 𝑄. A question grouping 
𝐺 is characterized by a set of disjoint groups {𝑔1, … , 𝑔𝑛} each 
hosting a subset of 𝑄 (i.e., 𝑔𝑖 ⊆ 𝑄). The optimal grouping 𝐺∗ is 
characterized by  |𝐺∗| = |𝐾| and for all 𝑘 ∈  𝐾 there is an 𝑖 ∈

 1, … , |𝐾|, such that 𝑔𝑖 =  {𝑞𝑘,1, 𝑞𝑘,2}.  Each step of our algorithm 
induces a grouping 𝐺𝑡. To assess the quality of these groupings at 
each step we define grouping accuracy and grouping refinement 
measures as follows: 
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Grouping accuracy describes the proportion of question pairs 
which are correctly co-located in one of the groups. Grouping 
refinement evaluates the average number of KCs in each group. 
The optimal grouping 𝐺∗ has an accuracy of 1 and a refinement of 
1. The initial dataset that hosts all questions in a single set has an 
accuracy 1 and refinement 1  |𝐾|⁄ . We want our algorithm to 
increase the refinement of the groupings while maintaining a high 
level of accuracy (i.e., we do not want to split up question pairs of 
the same KC). 
Table 1 displays the token counts and costs associated with two 
KC generation prompting techniques, expert and textbook, as well 
as the generation of KC ontologies for each domain. 
 
Table 1: Summary of token distribution and associated costs 
for the different prompting approaches.  

 
Method MCQ 

count 
Total 

Tokens 
Prompt 
Tokens 

Completion 
Tokens 

Cost 
(USD) 

expert 160 462,880 307,680 155,200 8.00 

textbook 160 436,480 239,040 193,120 8.00 

chemistry 
ontology  

80 104,548 97,736 6,812 3.34 

e-learning 
ontology 

80 87,742 81,114 6,628 2.83 

4 RESULTS 

In our study, we initially evaluate the effectiveness of the two 
prompting strategies within the domains of Chemistry and E-
Learning. This evaluation is based on how well each strategy’s 
outcomes align with the expert KCM. Subsequently, we explore 
the preferences of domain experts for the KC labels when 
discrepancies arise, determining whether they favor labels 
generated by human experts or those produced by the LLM. Lastly, 
we examine the performance of our ontology induction algorithm 
in both domains, focusing on its capability to categorize unlabeled 
questions by identifying shared KCs. 

4.1 KCM Match Success 

For the first part of this study, we evaluated how well the KCs 
generated by the LLM aligned with the KCs originally assigned to 
MCQs by their authors, across two distinct prompting strategies. 
Our assessment included a direct comparison of the LLM-
generated KC to the author-assigned KC for each MCQ. 
Additionally, we examined the top five KCs proposed by the LLM 
from the second prompt in both strategies to determine if any of 
these suggestions matched the author-assigned KC. Furthermore, 
we explored whether each MCQ was correctly categorized by only 

one strategy or if both strategies successfully identified the correct 
KC. The outcomes of these comparative analyses are presented in 
Table 2. 
 
Our two-proportion z-test comparing the KC match rates of the 
simulated textbook strategy for Chemistry (42/80, 52%) and E-
Learning (28/80, 35%) questions revealed a significant difference 
(Z=2.698, p=.007). This indicates a statistically significant better 
performance of the simulated textbook strategy for Chemistry over 
E-Learning at p < .05, rejecting the null hypothesis of no difference 
in KC match rates. 
 
Table 2: For each domain (Chemistry & E-Learning) and 
strategy (Expert & Textbook), the performance of LLM-
generated KCs in relation to the existing KCM. The 
frequency of direct matches with the human tagged KC; 
instances where the KC was present in the top five LLM-
generated KCs; occasions where a KC was uniquely 
identified by only one strategy; and cases where both 
strategies matched the human tagged KC. 
 

 Chemistry E-Learning 

Metric Expert Textbook Expert Textbook 

Direct 
Match 

42/80 
(52%) 

45/80 
(56%) 

28/80 
(35%) 

28/80 
(35%) 

Top 
Five 

64/80 
(80%) 

63/80 
(79%) 

45/80 
(56%) 

50/80 
(63%) 

Matched 
Exclusively 

9/80 
(11%) 

12/80 
(15%) 

9/80 
(11%) 

9/80 
(11%) 

Matched 
by Both 

33/80 
(41%) 

19/80 
(24%) 

 
We further explored the effectiveness of the simulated textbook 

strategy for identifying KCs across the MCQs in both domains. 
This analysis focused on the 40 KCs in each domain, where each 
KC was linked to 2 MCQs, to assess the accuracy of their tagging. 
In the Chemistry domain, the simulated textbook strategy 
successfully matched both MCQs to their correct KCs in 15 out of 
80 cases (19%), correctly matched just one of the two MCQs also in 
15 out of 80 cases (19%), and failed to match the KC in either MCQ 
for 10 out of 80 cases (13%). Similarly, in the E-Learning domain, 
both MCQs were accurately matched with their KC in 7 out of 80 
cases (9%), only one of the two MCQs was correctly matched in 14 
out of 80 cases (18%), and both MCQs failed to be matched in 19 
out of 80 cases (24%). These results reveal the LLM’s variable 
success rate in precisely identifying KCs through MCQs across 
different educational domains, suggesting superior performance 
for Chemistry compared to E-Learning. However, a chi-square test 
of independence revealed no significant association between the 
domain and the three aforementioned matching outcome 
categories (X2(2, N=160) = 5.737, p=.057). 

4.2 Human KC Preference 

For the MCQs in both the Chemistry and E-Learning domains that 
did not have a successful match with their KC using the simulated 
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textbook strategy, we established the preferred KC label through 
the consensus of three domain expert human evaluators. A KC 
label was considered preferred only if at least two out of the three 
evaluators agreed on its selection. From the simulated textbook 
strategy, Chemistry had 35 MCQs where the human and LLM KCs 
were mismatched, and E-Learning had 52 MCQs. 

Within the Chemistry domain, analysis of 35 MCQs revealed a 
clear preference for the LLM-generated KC labels, which were 
chosen in 23 out of 35 cases (66%), compared to human-generated 
labels preferred in 12 instances (34%). Additionally, we observed a 
substantial level of agreement among the experts, with two-thirds 
majority agreement (at least two evaluators in agreement) 
occurring in 25 out of 35 cases (71%), while unanimous agreement 
(all three evaluators in agreement) was found in 10 cases (29%). 
Similarly, in the E-Learning domain, upon examining 52 MCQs, 
LLM-generated labels were preferred in 32 cases (62%), with 
human-generated labels being chosen in 20 cases (38%). The 
evaluators demonstrated a clear consensus, with two-thirds 
majority agreement present in 34 out of 52 instances (65%) and 
unanimous agreement observed in 18 instances (35%). A 
comparison of the preferences by domain can be seen in Figure 6. 
Aggregating preference data from both domains we can verify a 
statistically significant preference for the LLM-generated KCs. A 
two-sided binomial test was conducted to assess whether the 
human evaluators exhibit a preference towards expert or LLM-
generated KC labels. For 57 out of 87 evaluated MCQs, the 
evaluators favored the LLM-generated labels, indicating a 
statistically significant preference (p=0.017). 

 

Figure 6: Comparison of domain expert preferences for 
human- vs. LLM-generated KC labels. 

4.3 Generated KC Ontologies 

We now focus on the KC ontologies generated by the clustering 
algorithm for the Chemistry and the E-Learning datasets. An 
excerpt of the KC ontology for Chemistry is shown in Figure 7. 
Going from the root of the tree downwards we can observe how 
the KCs identified by the algorithm increase in granularity at each 
step. 

 

Figure 7: A section of the tree structure demonstrating KC 
ontology refinement for part of Chemistry. 

To evaluate the quality of the KCM at different steps we employ 
the grouping accuracy and refinement metrics defined in Section 
3.4. First, for Chemistry (Figure 8, left) the algorithm converges 
within 6 iterations to a KCM that groups the 80 questions into 42 
different KCs–close to the expert model with 40 KCs. At time of 
convergence the grouping accuracy indicates that 65% of the 
question pairs are matched correctly and the grouping refinement 
of 0.804 indicates that the majority of nodes only feature questions 
belonging to a single KC. Second, for E-Learning (Figure 8, right) 
the algorithm converges within 5 iterations to a KCM that groups 
the 80 questions into 63 different KCs-exceeding the expert model 
with 40 KCs. At the time of convergence, the grouping accuracy is 
17.5% and the grouping refinement is 0.848. Because the final E-
Learning KCM employs 63 KCs, many KCs are only tagged to a 
single question leading to splits between the expert defined 
question pairs explaining the low accuracy. This suggests that 
LLM-generated KCM is of finer granularity than the human expert 
KCM. In real world applications, the domain expert might want to 
employ a lower level of KC granularity which can be achieved by 
terminating the algorithm early. 

5 DISCUSSION 

Our results demonstrate the potential of leveraging LLMs to 
generate and assign high-quality KCs to educational questions. 
Specifically, in the undergraduate Chemistry domain, we 
successfully matched more than half of the MCQs with their 
corresponding KCs, and in the master’s E-Learning domain, we 
achieved a match rate of one-third. For MCQs whose KCs were 
not directly matched by the LLM, domain expert evaluations 
showed a two-thirds preference for LLM-generated KCs over the 
existing human-generated alternatives. Additionally, we 
introduced a novel clustering algorithm for grouping questions by 
their KCs in the absence of explicit labels. These results propose a 
scalable solution for generating and tagging KCs for questions in 
complex domains without the need for pre-existing labels, student 
data, or contextual information. 
The higher match rate for Chemistry compared to E-Learning can 
potentially be traced back to the quality of the human-generated 
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KCM. The Chemistry KCM featured more specific KCs, each 
typically incorporating just a single piece of domain-specific 
jargon, unlike the broader KCs with multiple terms found in the E-
Learning KCM. Additionally, introductory Chemistry topics are 
likely to be more prevalent in the LLM’s training data than the 
specialized E-Learning content, which might have contributed to 
this discrepancy. Despite reasonable success in identifying the top 
five KCs, the LLM faced difficulties in accurately selecting the 
most appropriate KC. It often favors general options over precise 
and domain-specific ones, potentially due to the presence of 
domain jargon. This led to a substantial portion of MCQs in both 
domains, 21% in Chemistry and 38% in E-Learning, not matching 
any of the top five KCs suggested by the LLM. These results 
indicate that while LLMs are capable of surfacing relevant KCs, the 
specific nature of domain jargon and a bias towards generalization 
can impede the accurate identification of a KC. 

We observed a notable and statistically significant (two-thirds) 
preference for LLM-generated KC labels over human-generated 
ones in both domains. This is possibly due to their slightly longer 
length and the enhanced readability afforded by the LLM’s 
advanced next-word prediction capabilities. Given this preference, 
it might suggest the importance of prioritizing human evaluative 
feedback over direct matches with existing KCMs when assessing 
LLM effectiveness in generating KCs, especially considering the 
subjective nature of KC evaluations which can vary significantly 
based on the reviewer’s perspective [22]. Another potential 
explanation may be that the original KCM designed by the course 
authors was imperfect, containing KCs that did not fit the 
particular MCQ or that were too broad. Interestingly, despite the 
inherent subjectivity in KC evaluation, all six reviewers in our 
study showed a preference for LLM labels. These findings 
highlight a pronounced preference for LLM-generated KC labels 
over human-generated ones across both domains. The higher 
preference for LLM labels, along with the levels of agreement 
among evaluators, suggests that LLM-generated labels could serve 
as an effective substitute for manually created labels in 
categorizing MCQs by their KCs. This preference does not imply 

that LLM-generated labels should completely replace human input; 
rather, they could at least provide a valuable foundation, enabling 
human experts to further select or refine the KCs identified by the 
LLM. This collaborative approach leverages the strengths of both 
LLM capabilities and human expertise, potentially leading to more 
accurate and universally acceptable KC categorizations. 

When generating KCs for pairs of questions that assess the 
same KC, we found that the LLM can assign labels with the correct 
semantic information, but with different wordings (e.g., see Figure 
4). To resolve these redundancies in the KCM, we proposed and 
evaluated an algorithm that iteratively partitions the question pool 
to generate KCMs of increasing granularity. The KC ontology 
induced by this process is similar to taxonomies such as the 
Common Core State Standards [40] which allow for the 
categorization of learning materials at different levels of specificity 
(refer to Figure 7). For the Chemistry questions, we observed that 
the KCM at the convergence of the algorithm is of similar 
granularity as the expert model and most expert identified 
question pairs are grouped correctly. For the E-Learning questions, 
the converged LLM-generated KCM featured significantly more 
KCs than the expert model (63 vs 40) indicating a higher 
granularity. Because of this, our evaluation metrics–which were 
grounded in the expert KCM–assigned the LLM-generated KCM a 
low grouping accuracy. Based on the human evaluation of human- 
and LLM-generated KCs, this might indicate that the expert KCM 
for the E-Learning course contains inaccuracies and is of lower 
quality. Lastly, LLM induced KC ontologies might support domain 
experts structure subject content and provide them with control 
over the level of KC granularity that is most appropriate. After 
deciding on a set of KCs the resulting taxonomy could provide a 
foundation for other types of automated KC tagging algorithms 
(e.g. [13,34,36]). 

Given the preference for LLM-generated KC labels observed in 
the human evaluations across both domains, practitioners could 
consider using these labels as initially provided. However, a more 
effective approach would involve implementing a human-in-the-
loop system, where domain experts review and confirm the 

 

Figure 8: Grouping quality at different steps of the KC induction algorithm for Chemistry and E-Learning. 
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appropriateness of these labels, creating their own alternatives if 
necessary. Ideally, this process would start with the LLM-
generated labels being preliminarily assigned to problems, 
followed by a verification step where experts could either approve, 
modify, or replace them as needed. This process not only ensures 
accuracy, but also significantly reduces the time and effort 
required compared to starting from scratch. Ultimately, while the 
initial LLM-generated labels serve as an effective preliminary pass 
in developing a knowledge component model, they should be seen 
as a foundation that can be further refined based on expert 
insights and student performance data [16]. 

6 LIMITATIONS & FUTURE WORK 

In our research, we introduced innovative methods for generating 
and grouping KCs using a LLM. However, this approach is subject 
to certain limitations, such as the opaque nature of LLMs, their 
susceptibility to unexpected output variations, and the potential 
for biased results [38]. To address these challenges and improve 
the reliability and efficiency of our methods, we employed a 
specific iteration of GPT-4, accessed through the gpt-4-0125-
preview API. This strategy was designed to standardize the 
evaluation process and guarantee the reproducibility of results by 
producing consistent outputs in response to predefined prompts. 
Despite these efforts, the choice of wording in prompts remains a 
critical factor, significantly affecting the model’s output due to 
LLMs’ inherent sensitivity to input nuances. Moreover, the process 
of evaluating KC quality is complicated by human subjectivity, 
even among domain experts following specific and detailed 
guidelines. The definition of a "good" KC is still not clear-cut [17], 
as reflected in prior literature discussing the desired granularity, 
making the evaluation process heavily dependent on individual 
judgment. Our study’s scope was limited to two domains, 
restricted by the scarcity of suitable datasets. Our attempts to use 
datasets similar to those in prior studies were obstructed due to 
their unavailability for access. Additionally, niche domains may 
exhibit poorer performance and higher inaccuracies due to their 
limited representation in the LLM’s training data. For example, 
this limited representation could explain the low agreement 
between the expert-created KCM and the E-Learning KC ontology 
generated by the algorithm. 

In future research, we aim to broaden the application of our 
methods to questions from additional domains and various 
formats, such as short-answer questions. We are interested in 
investigating the impact of different contexts, such as instructional 
text provided before a question, on the quality of KCs generated 
by LLMs. Our goal is to further refine the prompting strategies we 
have developed and to foster collaboration among researchers and 
educators by making our data and code publicly available. 
Additionally, we plan to explore the potential benefits of utilizing 
different LLMs, which may enhance the results or provide greater 
consistency, a notable challenge in current LLM education 
research. 

 

7 CONCLUSION 

KCs are crucial for modeling student learning and empowering 
educational technology with adaptivity and analytics. Therefore, 
simplifying and scaling the creation and association of KCs with 
educational content across various domains is essential. In this 
context, our study suggests that LLMs can play a significant role in 
facilitating this process. We developed a method to generate KCs 
for assessment items relying solely on the questions’ context and 
demonstrated its success with assessments from Chemistry and E-
Learning courses. Our findings indicate that, although the direct 
matches between LLM-generated and human-generated KCs were 
moderate, domain experts most frequently preferred the LLM-
generated KCs for the assessments. To overcome the challenge of 
categorizing assessments by their underlying KCs without labels 
or context, we also introduced an algorithm for inducing KC 
ontology and clustering assessments accordingly. Despite the 
subjectivity, time, and domain expertise that is typically part of the 
KC mapping process, our approach represents a step towards a 
scalable solution that addresses these challenges across complex 
domains. Our research highlights the potential of LLMs to enable 
individuals, regardless of their technical skills or domain 
knowledge, to contribute to the development of Knowledge 
Component Models. 
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