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Abstract
Adaptive Experimentation is one of the most promising approaches
to support complex decision-making in learning experience design
and delivery. This paper reports on our experiencewith a real-world,
multi-experimental evaluation of an adaptive experimentation plat-
form within the XPRIZE Digital Learning Challenge framework,
and summarizes data-driven lessons learned and best practices for
Adaptive Experimentation in education.We outline key scenarios of
the applicability of platform-supported experiments and reflect on
lessons learned from this two-year project, focusing on implications
relevant to platform developers, researchers, practitioners, and pol-
icy stakeholders to integrate Adaptive Experiments in real-world
courses.

This work is licensed under a Creative Commons Attribution International
4.0 License.

LAK 2025, Dublin, Ireland
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0701-8/25/03
https://doi.org/10.1145/3706468.3706471

CCS Concepts
• Human-centered computing→ Interaction design process and
methods; • Information systems → Decision support systems; •
Applied computing→ Education.

Keywords
adaptive experiments, posterior sampling, experimentation plat-
forms, educational technology, human-computer interaction

ACM Reference Format:
Ilya Musabirov, Mohi Reza, Haochen Song, Steven Moore, Pan Chen, Harsh
Kumar, Tong Li, John Stamper, Norman Bier, Anna Rafferty, Thomas Price,
Nina Deliu, Audrey Durand, Michael Liut, and Joseph Jay Williams. 2025.
Platform-based Adaptive Experimental Research in Education: Lessons
Learned from The Digital Learning Challenge. In LAK25: The 15th Inter-
national Learning Analytics and Knowledge Conference (LAK 2025), March
03–07, 2025, Dublin, Ireland. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3706468.3706471

1 Introduction
Online courseware platforms provide instructors, learning design-
ers, and researchers with extensive opportunities to enhance learn-
ing experiences and improve outcomes [35]. However, this intro-
duces additional complexity, as there are now many decision points
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with different potential improvements at each step of the student’s
learning experience [22].

Although major technology companies rely on systematic A/B
testing, backed by years of research and evidence-based best prac-
tices [23], educational settings present distinct challenges that ex-
tend beyond traditional online experimentation [36]. These chal-
lenges include managing limited sample sizes and complex pop-
ulations, engaging stakeholders in pedagogically meaningful ex-
periments [39], and balancing scientific discovery with practical
student impact [35].

Instructors often worry about the fairness of experiments, con-
cerned that students might end up in a less effective learning condi-
tion. Moreover, when an experiment shows differences in outcomes
between conditions, educators may hesitate to replicate it, making
it difficult to understand what led to its success or how underrep-
resented students were affected. However, it is both practical and
scientifically important to verify that an intervention works or
to test new, potentially better ideas. Rather than viewing experi-
mentation as a yes-or-no decision, we should consider it a balance
between two strategies: “exploring” (gathering data to discover the
best condition) and “exploiting” (choosing the condition believed
to work best based on current data). This balance lies at the heart
of adaptive experimentation.

Adaptive experiments differ from traditional A/B tests by dynam-
ically updating the assignment policies throughout the experiment.
This approach enables conditional assignment strategies, flexible
experimental grouping, and personalized interventions while bal-
ancing multiple objectives, such as optimizing student outcomes
and advancing scientific discovery. Numerous applications demon-
strate the effectiveness of adaptive experiments across fields [4],
including advertising [15], public health [26, 32], clinical trials [8],
and policy evaluation [2].

In this paper, we report on the data-informed lessons learned,
which are centered on a multi-experiment field deployment evalu-
ating an adaptive experimentation platform within the two-year
XPRIZE Digital Learning Challenge1 (the Challenge). This deploy-
ment involved the rapid conduction and systematic replication
of five experiments within 30 days across multiple courses and
institutions. Through application scenarios, we demonstrate two
key ideas of adaptive experimentation: evidence-driven outcome
optimization and context-sensitive personalization. We explore how
stakeholder-centric design can empower instructors, learning de-
signers, and researchers to create and manage experiments for
continuous learning improvement. We emphasize the use of data-
informed simulations, customized visualizations, and strategies to
address the small sample sizes typical of education as crucial tools
for stakeholder-centric design..

While the existing literature primarily approaches adaptive ex-
periments from an optimization perspective, emphasizing theoreti-
cal guarantees and algorithmic properties, we adopt a pragmatic
approach focused on designing experiments grounded in real-world
settings to enhance practical applicability while maintaining a high
level of scientific rigor. By providing recommendations and tools,
this research contributes to addressing key education-specific de-
sign constraints:

1https://www.xprize.org/challenge/digitallearning

• Accounting for realistic effect size estimates for educa-
tional interventions, informed by recent meta-analyses [24,
25] that suggest more conservative effects than traditional
social science expectations;

• Addressing sample size constraints inherent to classroom-
based research;

• Supporting stakeholder agency and decision support for
researchers, instructors, and learning designers, acknowl-
edging their distinct yet overlapping interests.

This research explores how adaptive experiments can improve
learning analytics and engineering workflows, bridging the gap be-
tween analytics and action. Our approach is implemented through
the Experiments As a Service Infrastructure (EASI), a platform for
adaptive experimentation [35]. While most tools are limited to spe-
cific platforms, EASI provides flexible random assignment methods
and broad cross-platform compatibility. EASI builds on integrations
with major learning platforms (e.g., edX, Coursera, Moodle, Canvas,
ASSISTments, OLI) and any LTI-compliant Learning Management
Systems. EASI offers access to a library of machine learning al-
gorithms and statistical methods for adaptive experiment design
and real-time analysis. This work extends our earlier Practitioner
Report [30] presented at LAK’24.

2 The Approach
First and foremost, at the core of our design process, we formed
an interdisciplinary group of research and software deployment
experts representing the fields of human-computer interaction, sta-
tistics and machine learning, learning science and engineering, as
well as educational practitioners, all with previous experience in
field randomized controlled trials in education. In addition, this
expert group (in short, “experts”) included developers of learning
infrastructure from the Open Learning Initiative (OLI) at Carnegie
Mellon University and developers of adaptive experimentation in-
frastructure. Three team members were also course instructors
with extensive experience using the course delivery platforms and
learning management systems within which we deployed our ex-
periments.

During the Challenge, we aimed to demonstrate the adaptive ap-
proach to experimentation and our platform capabilities in the rapid
multi-replication of educational interventions for different student
demographics. The scope of expert work was not limited just by the
Challenge participation. Firstly, the experts reflected on previous
adaptive experimentation experiences of the Intelligent Adaptive
Interventions Group at the University of Toronto in the computer
science education and mental health research domains, finding po-
tentially promising patterns of adaptive experiments from previous
work [26, 31, 35]. Secondly, during the Challenge, in addition to
guiding the team’s work, the experts outlined key adaptivity sce-
narios, demonstrating the design space of learning interventions
expanded by adaptive experimentation. These scenarios, teamwork
protocols, and empirical data served as the foundation for a series
of statistical simulations, expanding from concrete experiments
to scenarios and hypothetical outcomes, representative of a wider
class of educational interventions. Lastly, the experts reflected on
challenges, lessons learned, and the broader applicability in the
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educational technology and learning analytics research and practi-
tioner community.

2.1 Iterative Refinement Through Field
Deployments

Participation in the Challenge included one pilot study and five
replication studies in different courses within a 30-day time frame.
These courses were offered across different institutions, subject
domains, and academic levels. Our settings included research and
teaching, public and private, and both two- and four-year institu-
tions. Within these settings, our experiments were deployed in a
range of courses representing diverse domains, with undergraduate
and graduate learners, and in both general education and for-majors
contexts. At Bethune-Cookman University, an HBCU in Florida,
we integrated our study into an undergraduate Anatomy & Phys-
iology course for allied health and pre-med majors. At Georgia
State University (GSU), a public Predominantly Black Institution
(PBI) with both four- and two-year campuses, we embedded our
studies in each campus’s respective gen-ed Introduction to Statis-
tics course. At Carnegie Mellon University in Pennsylvania, we
deployed in Interactive Data Science, a STEM course with a mixed
undergraduate/graduate population, and Tools for Online Learning,
a graduate-level class in Learning Engineering.

To support deployment in a diverse set of courses, we chose
intervention cases designed as loosely coupled with the course
content and EASI, enabling researchers and instructors to rapidly
replicate them in any new course using existing course content.
These interventions were created for a common formal education
context in which students independently work through an online
textbook containing short passages and videos with content knowl-
edge. Students engage in various activities at the end of each text-
book section to promote learning. The first intervention aimed
to provide students with retrieval practice prompts tied to course
activities, using accuracy on the following problem as a proximal
outcome (algorithm reward). The second intervention focused on
the motivational domain, encouraging students to participate in
optional course activities through self-/peer-based frameworks and
tracking engagement outcomes.

All deployments during the Challengewere conducted on courses
using the Open Learning Initiative (OLI) platform [3], which is
designed to support robust experimentation at scale in collaboration
with institutions already using the OLI courseware. Instructors of
these courses had previously used OLI for one to three semesters
before EASI integration.

2.2 Simulations for Supporting Experimental
Design and Decision-Making

Statistical simulations are an essential tool in the design of random-
ized controlled trials (RCTs). When creating classic randomized
experiments using the frequentist approach, one of the key consid-
erations is the acceptable margin of error. This involves fixing an
acceptable false positive error rate in advance and analyzing the
potential probability of a false negative error in relation to sam-
ple size and effect size [6, 27]. In the most straightforward cases
of common statistical tests and models, these calculations can be
done analytically and are implemented in statistical packages, on-
line “calculators” for experiments, and more advanced software

that assists with statistical experimental designs [10]. More com-
plex models, experimental designs, and metrics require the use of
“what-if” statistical simulation analysis based on the Monte Carlo
approach: creating multiple simulated experiments with known
design parameters and data-generation processes and analyzing the
range of hypothetical outcomes across thousands of experiments
to make design decisions [29].

In this paper, we extend this approach, using statistical simula-
tions to expand the understanding of concrete cases and adaptive
experimental designs to a wide range of practically relevant scenar-
ios and constraints typical of educational interventions. Based on
this, we ground expert recommendations in data-informed “what-
if” analysis, focusing on opportunities, challenges, and up-scaling
considerations for adaptive experiments in education.

2.3 Adaptive Experiments Definitions
ªDecision Point A step in a learner’s journey in online course-

ware when a choice is made between alternative conditions
informed by data, policy algor ithms, and other relevant con-
siderations.

¥Condition A specific treatment, arm, or variation assigned
to a learner during the experiment.

�Reward A measurable outcome resulting from the interac-
tion of a learner with one of the conditions.

�Contextual Variable A factor or characteristic that pro-
vides relevant context for the experiment, for example, the
learner’s prior knowledge estimate or time before the dead-
line.

ÆMulti-armed Bandit (MAB) Amachine learning approach
to decision problems, including adaptive experimentation,
where conditions are selected sequentially over time to opti-
mize the target performance metric [19]2.

3 Application Scenarios for Adaptive
Experiments

In this section, we use two example experiments adapted from the
Challenge to illustrate the core ideas and features of adaptive ex-
periments. First, we present an example that demonstrates how
these experiments adapt to better outcomes based on evidence gath-
ered, highlight key metrics that provide insight into this process,
and discuss potential enhancements enabled by adaptive experi-
mentation. Next, we discuss another experiment showcasing the
potential for personalization to subgroups. These scenarios illustrate
how adaptive experiments can help explore and replicate the impact
of novel variations of existing interventions in practice, targeting
diverse outcomes of interest such as assessments and participation
in learning activities. We use each application scenario to demon-
strate helpful decision affordances, and example analyses providing
insight into adaptive experiments.

2Throughout this paper, we use the Thompson Sampling [5] MAB algorithm in our
examples and refer the reader to [31] for a detailed case study on its use in adaptive
experimentation. EASI implements a wider range of MAB algorithms [28]
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3.1 Adapting to Better Outcomes: Encouraging
Self-Reflection

  Learning designer Yi wants to evaluate whether
prompting students to think critically about their responses
and the learning process improves immediate learning out-
comes. ª She chooses a specific decision point: a particu-
lar asynchronous activity in the course where students are
prompted to reflect. Students can begin the activity at different
times. To experiment with different methods, she specifies two
conditions:

• ¥ Condition 1: No self-explanation prompt is shown
to the student.

• ¥Condition 2: A self-explanation prompt is provided,
which asks: Can you explain why you chose your answer?
Imagine that you were explaining it to another student
or your instructor.

� She selects the correctness of the student’s answer to a
multiple-choice question (relevant to the activity) as the re-
ward for her experiment. This metric measures the impact of
reflection prompts on learning outcomes.	 She configures
the algorithm updates to occur after every interaction with
the exercise.

Decision Affordances and Example Analysis: Adaptive Experiment
Monitoring. Traditional experiments assign conditions uniformly,
while adaptive experiments adjust assignment probabilities based
on accumulated evidence. Over time, as more student data accumu-
late, the approach shifts from a standard experimental split (that is,
50/50), preferring better empirically performing conditions based
on available evidence. To better understand this process, we zoom
in on hypothetical steps of our Encouraging Self-Reflection experi-
ment with the help of metrics and visualizations used for adaptive
experiment monitoring.

Decision Affordances. Table 1 showcases instruments that are
useful for both understanding andmonitoring probabilistic adaptive
experiments. The current state of knowledge of an adaptive experi-
ment algorithm can be summarized using the posterior probability
distribution for each condition (column “Probability Distributions”
in the table). These distributions can provide researchers and ana-
lysts with deep insight into the learning dynamics of the algorithm
and serve as a foundation for more user-centered metrics.

One such metric is the set of selection probabilities (or assignment
probabilities) for each condition (column “Selection Probability” in
the table). These probabilities indicate what condition is more likely
to be assigned in the next step. The more consistent evidence the
algorithm gathers in relative favor of a particular condition, the
more likely it will be selected in the future. Selection probabilities
summarize the relative effectiveness of conditions at the current
step.

Example Analysis. Table 1 summarizes the number of successes
and failures and the changing selection probability for each condi-
tion at each step. It also illustrates how evolving knowledge about
the performance of each condition and the associated uncertainty

is represented in the adaptive algorithm using probability distri-
butions. We used the Thompson Sampling [5] adaptive learning
algorithm in our examples and refer the reader to [31] for a detailed
case study on its use in adaptive experimentation.

Step 1 represents an early stage of the experiment. The algorithm
selected Condition 1 (no self-explanation prompt) for the first par-
ticipant, and we received a negative reward from them. Taking
into account the prior information (often set equal to one success
and one failure for each condition if no additional information is
available), the selection probability for Condition 2 in the next step
would be approximately twice as high as for Condition 1.

By Step 2, more data has been gathered, leading to improved effi-
ciency estimates for both conditions. This is reflected in narrower
probability distributions, which summarize the algorithm’s updated
confidence in each condition’s effectiveness. Selection probabilities
continue to adjust dynamically, favoring the condition with better
observed performance.

At Step 3, the algorithm’s accumulated evidence more strongly
supports Condition 2 as the more effective option. The probability
distributions for each condition become narrower, indicating re-
duced uncertainty. Additionally, the slightly narrower shape of the
distribution for Condition 2 at this step indicates that we have more
information about its effectiveness as a result of allocating more
participants to it. This process illustrates how adaptive experiments
use evidence dynamically to refine decision-making and optimize
outcomes.

3.2 Personalizing Interventions: Improving
Participation in Optional Learning Activities

  Instructor Steve is concerned that some students par-
ticipate less in asynchronous optional generative activities,
which ask students to create a revision question based on the
learned material. He aims to evaluate different ways to moti-
vate diverse groups of students to participate more actively in
these activities.

ªBased on prior research, Steve finds that brief motiva-
tional messages before an activity can increase student engage-
ment and participation. He decides to test two motivational
approaches:

• ¥ Condition 1 (Self-Focused): Creating a question
is a way to help you learn better by revising the content.
Think of it like flashcards that help you review. We are
not going to share the results with other students.

• ¥ Condition 2 (Peer-Focused): By creating a ques-
tion, you are helping to improve this course, contributing
to the learning of your peers, and assessing your own
understanding of the content.

Steve hypothesizes that students with lower self-efficacy or
lower demonstrated knowledge might respond better to the
Condition 1, Self-Focusedmessage, as it places less pressure
on them. In contrast, students with higher self-efficacy or
greater demonstrated knowledge may be more motivated by
the Condition 2, Peer-Focused message, as it emphasizes
contributing to the group by demonstrating their skill.
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Condition Successes Failures Selection Probability Probability Distributions

Step 1

1 0 1 33%

2 0 0 67%

Step 2

1 4 6 20%

2 6 4 80%

Step 3

1 12 18 2%

2 24 12 98%
Table 1: Condition outcomes, selection probabilities, and evolving probability distributions across steps in a hypothetical
experiment.

� To test these hypotheses, Steve incorporates the con-
textual variable of whether a student correctly answered a
multiple-choice test question (Higher or Lower Prior Accu-
racy), using this as a proxy for their demonstrated level of
knowledge.

� He chooses the fact that a student submitted an answer
to an optional activity as the reward for his experiment. Steve
configures the 	 algorithm updates to occur after every
asynchronous interaction with the exercise.

3.2.1 Decision Affordances and Example Analysis: Adaptive Experi-
ment Outcomes. In this section, we use our Improving Participation
in Optional Learning Activities application scenario to discuss how
collected data can be used for statistical analysis. This scenario
also illustrates the potential of contextual interventions. As before,
we base this discussion on simulated data, with the details of
the experiment design adapted from real deployments during the
Challenge.

Decision Affordances. To analyze the outcomes of the experiment,
we rely on two key groups of decision affordances.

The first is hypothesis testing and alternative frequentist and
Bayesian approaches to analyze experimental outcomes. Although
traditional statistical methods (e.g., Wald Z test or Bayesian prob-
ability of superiority) can be applied, adaptively collected data
present unique challenges. These challenges are beyond the scope
of this paper, and we refer the reader to [9, 33, 38] for a deeper
discussion.

The second is the use of data visualizations to summarize and
interpret experimental results. Common approaches include bar
charts with error bars to summarize outcomes (Figure 1). While
widely used, recent research highlights the limitations of bar charts
in accurately conveying effects and supporting decision-making [16,
42]. To improve decision support, we encourage analysts and tool

developers to explore best practices, such as alternative ways of
presentation and visualization of results [1, 18, 21].

Beyond summarizing the efficiency of each condition, it is essen-
tial to assess how well the experiment fulfilled the primary promise
of adaptive experimentation: reallocating to better-performing con-
ditions based on accumulated evidence. For this purpose, we use
frequency-based framing in visualizations [14, 20] (Figure 2).

Example Analysis. Applying theWald Z test to simulated data for
Improving Participation in Optional Learning Activities application
scenario, we could conclude (Figure 1A) that the Peer-Focused
condition (Condition 2) outperforms the Self-Focused condition
(Condition 1) (𝑧 = 4.55, 𝑝 < 0.0001, Cohen’s 𝜔 = 0.12)3.

However, a closer analysis (Figures 1B and 1C) reveals that, for
a statistical minority (the 20% of students with Lower Prior Accu-
racy), the Peer-Focused condition performs worse than the Self-
Focused condition, with a larger effect size (𝑧 = 3.31, Cohen’s
𝜔 = 0.2). The benefit of the Self-Focused message for Lower Prior
Accuracy students is obscured by the majority group (80% of stu-
dents with Higher Prior Accuracy), where the Peer-Focused con-
dition outperforms the Self-Focused condition (𝑧 = 6.77, Cohen’s
𝜔 = 0.2). This majority effect drives the overall average positive
effect, even though assigning the Peer-Focused message universally
would harm students with Lower Prior Accuracy.

Figure 2 illustrates how the contextual adaptive experiment suc-
cessfully personalized the treatment using accumulated knowledge.
It allocated more participants in each group (Higher Prior Accuracy
and Lower Prior Accuracy) to the conditions most effective for their
respective groups.

3Wald Z-test for two independent samples.
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Figure 1: Simulated experiment results. Bar colors denote Condition 1, Self-Focused and Condition 2, Peer-Focused. Panel A
represents the combined results for all participants. Panels B and C represent results for the groups with Higher Prior Accuracy
and Lower Prior Accuracy on a previous task, respectively.

Figure 2: Simulated experiment results. Allocation and outcomes for the majority (Higher Prior Accuracy, left panel) and the
minority (Lower Prior Accuracy, right panel) groups. Condition 1, Self-Focused assignments are represented by a green bullet •
for success and by a lighter green • for failure. Similarly, Condition 2, Peer-Focused assignments are represented by a blue
bullet • for success and by a lighter blue • for failure.

3.3 Summary: Promise of Adapting
Experiments Proportional to Uncertainty

The features demonstrated in this section enable researchers, in-
structors, and learning designers to conduct a wide range of adap-
tive experiments aimed at course improvement. These experiments
can address micro-level objectives, such as refining specific actions
or enhancing a particular course element, or macro-level goals, such
as improving overall course outcomes. Dynamic assignment of stu-
dents to better-performing conditions reduces the decision-making
burden on course teams while improving student outcomes.

In similar scenarios, the potential for adaptivity and personaliza-
tion must be clearly communicated. Experimental platforms should
support users in exploring and visualizing these capabilities early in
the design process to enable informed decisions about interventions,
particularly from an equity perspective.

4 Supporting Experiment Design Decisions
One of the key challenges in adaptive experimentation is provid-
ing stakeholders with the tools and affordances needed to under-
stand and design adaptive interventions. In traditional RCTs, power
analysis plays a primary role in guiding decision-making, such as
determining the required sample size during the design phase [10].

However, adaptive experiments introduce a trade-off between
participant benefit and statistical inference [7, 9, 33, 34], complicat-
ing statistical analysis compared to traditional A/B tests. As a result,
stakeholders must consider the potential benefits and constraints of
transitioning from traditional RCTs to adaptive experiments during
the design process.

Additionally, there is a need to establish metrics and design
strategies that can help stakeholders make more informed and
efficient decisions.

18
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4.1 Data-Informed Simulation for Intervention
Design Decisions

During the Challenge, we prototyped modules aimed at letting in-
structors, designers, and researchers take data from one experiment
and apply it to specify alternative scenarios for what the effects of
conditions might be in different replications. Here, we demonstrate
this approach step-by-step4.

Decision Affordances. We need to provide stakeholders with com-
plementary tools that clarify the various aspects and metrics influ-
encing the design of an adaptive experiment.

Multiple decision metrics are critical for stakeholders when
adopting adaptive experiments. These include the correctness rate
and average reward, which respectively measure the performance
of experimental and optimization treatments of the Multi-armed
Bandit problem.

Average Reward represents the overall outcome of an exper-
iment by combining results across conditions5. Consider
a scenario with binary rewards. In an experiment of 100
participants distributed between Conditions A and B, 60
participants are allocated to Condition A, and 40 are allo-
cated to Condition B. Of these, 45 participants in Condition
A have successful outcomes, and 20 in Condition B have
successful outcomes. The average reward for the experiment
is 45+20

60+40 = 0.65.
Correctness Rate measures how often the best condition is

assigned to a participant. During the experiment, an adaptive
algorithm explores all conditions to estimate their effects.
This exploratory phase results in some participants being
assigned to suboptimal conditions, lowering the correctness
rate.

In addition, we need tools informed by recent research in data
visualization for decision making to help stakeholders make
more informed design decisions [13, 16, 18, 21, 42].

Raincloud Plots [1] (Figure 3c) offer a robust visualization
method that combines multiple perspectives, including den-
sity plots, boxplots, and raw data points, to represent the
shape of underlying probability distributions. Fitzgerald and
Tipton [13] advocated their use for meta-analyses of multiple
experiments, and we apply this tool to summarize simulated
experiments.

Hypothetical Outcome Plots [18] (Figure 4) address chal-
lenges in helping stakeholders interpret observed effects,
particularly when statistical expertise varies. Kale et al. [18]
suggest demonstrating a number of outcomes of simulated

4Technical note: Simulation setup should closely replicate the specific design and
algorithms of the intended deployment. In this example, we simulate the application
scenario from 3.1 with effect sizes typical of educational interventions.We use oneMAB
algorithm, Thompson Sampling [5], and compare it with uniform random allocation,
the baseline approach for traditional randomized controlled trials (RCTs). Simulations
are based on a stochastic processwith fixed reward distributions for different conditions.
We simulate a case with binary rewards modeled as Bernoulli distributions with
𝑝𝑖 ∈ (0, 1) representing the default success probability for condition 𝑖 . While ground-
truth success probabilities are controlled in simulation, they are unobservable to
experimenters in practice. The two-condition experiment uses effect sizes converted
from Cohen’s 𝑑 to 𝑝′

1, 𝑝
′
2 centered around 0.5. Thompson Sampling updates posterior

success probabilities using Bayesian inference with a conjugate Beta distribution,
leveraging the prior (Beta(1,1) in this case) and observed data for each condition.
5Technical note: In Machine Learning literature, the focus is usually on minimizing
regret.

experiments, sharing characteristics with the experiment
under consideration (hypothetical outcomes). Determining
the number of static outcomes needed to build stakeholder
intuition remains an open question. For this purpose, Kale
et al. [18] suggest using animation where possible.

Example Analysis. To understand the potential outcomes of the
experiment during the design stage, we first need to define the ef-
fect sizes of interest. There are multiple approaches to do this [27].
Even if there is no prior information about a particular interven-
tion, looking at the realistic ranges of effect sizes for relevant ed-
ucational interventions [24] and taking into account types and
“closeness” of outcomes to the interventions and other design char-
acteristics [24, 25, 41] is critical to make informed decisions. For
adaptive interventions, it is also important to consider proximal
outcomes as rewards to enable the intervention to adapt quickly.

In this example, we use a range that roughly corresponds to
Cohen’s d from 0.05 to 0.3, reflecting more realistic estimates for
small to large sizes of educational interventions [24]. We also use
a range of sample sizes of interest, 20-1000, representing typical
classroom enrollment in the Challenge (see Table 3).

Figure 3 illustrates how an Adaptive Experiment compares to a
traditional RCT by simulating hypothetical experiments across the
specified ranges of effect sizes and sample sizes.

The correctness rate (Figure 3a) assumes that every time a sub-
optimal condition is chosen, a student is underserved during a
particular interaction, treating all errors with equal weight regard-
less of the actual difference in effectiveness between conditions.
In contrast, the average reward (Figure 3b) provides stakeholders
with insight into potential performance across the entire classroom.
Notably, the average reward is lower than the correctness rate,
reflecting the reality that achieving a 100% outcome (e.g., perfect
correctness in answering test questions for all participants) is un-
likely, even with 100% assignment to the better condition.

However, these outcomes represent average results from a se-
ries of simulated experiments, which could mislead stakeholders if
treated as guarantees. Figure 3c uses raincloud plots to provide a
much-needed closer look at the hypothetical outcomes for a sam-
ple size of interest, usually dictated by course enrollment. In this
case, we selected a classroom size of 100 to explore the potential
performance of interventions across different effect sizes. Despite
reasonable average results even for small effect sizes, a substantial
proportion of experiments could perform worse in reallocating to
better conditions than traditional uniform random allocation6.

In practice, depending on the primary objective of the adaptive
experiment, this might not necessarily constitute a problem. If the
focus is on maintaining reasonably good performance (as repre-
sented by the average reward), it is evident that most fluctuations
occur when effect sizes and/or sample sizes are small. However,
small effect sizes often imply that there is no substantial difference
between conditions, so mistakes may not be costly in terms of
overall benefit.

Conversely, adaptive experiments demonstrate clearer advan-
tages when larger differences between conditions exist. For example,

6Technical note: These results are specific for the particular algorithm and setup we
used in the example. For a broader discussion of sources of biases in Multi-armed
Bandits we refer the reader to [37].
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(a) Correct rate across different sample and effect sizes (b) Average reward across different sample and effect sizes

(c) Zoomed in reward distribution with a sample size of 100 at different effect sizes

Figure 3: Average rate of correct assignments and average reward in relation to sample size and effect size. The black dashed line
represents the performance of the corresponding metric under traditional equal allocation RCT for comparison. Effect sizes
are shown in the following colors: 0.05 , 0.1 , 0.2 , 0.3 . Results are based on replications of the hypothetical experiment.

the highlighted box in Figure 3c corresponds to a Cohen’s 𝑑 of 0.2.
In approximately 25% of cases, the performance approaches the
average reward of the optimal condition. Moreover, in over 50% of
cases, adaptive experiment outperform traditional RCT.

Therefore, it is crucial to communicate both the correctness rate
and average reward perspectives to stakeholders during experimen-
tal design.

While this information may provide stakeholders with enough
context to make a decision, hypothetical outcome plots can offer
additional insights by visualizing multiple simulated "classrooms"–
instances of the experiment. Figure 4 presents results from five

hypothetical adaptive experiments, each with an effect size of 0.2
and a sample size of 200. Although the experimental setup is iden-
tical across all five cases, we observe that four experiments quickly
identified the optimal condition (Condition 2). However, in one case,
the experiment required more time to converge to the optimal arm.
This delayed convergence typically occurs when the exploration
phase encounters early negative outcomes, which can mislead the
policy learning process [38].
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Figure 4: Five hypothetical outcomes for the same experimental design parameters (sample size 200 and effect size 0.2).
Condition 1 assignments are represented by a green bullet • for success and by a lighter green • for failure. Similarly, Condition
2 assignments are represented by a blue bullet • for success and by a lighter blue • for failure.

Table 2: Illustrative examples of research, learning design, and classroom improvement interventions.

Example
#

Intervention Level

E1 Motivational prompts to pursue more practice connected to
classroom events

Classroom/Section level

E2 Alternative explanations of a course concept Classroom/Section level or Course level
E3 Adding self-explanation prompts after course videos Course level or General research level

4.2 Summary: Simulations for
Stakeholder-Centered Adaptive
Intervention Design

We suggest presenting the results from research-centered simula-
tions summarized via raincloud and hypothetical outcome plots
to support stakeholder understanding and decision-making. The
approach helps researchers simulate the collection and analysis
of data from thousands of repeated runs of an experiment under
different scenarios of what the effects could be and what might
mediate these effects, such as student characteristics. This allows
researchers and instructors to specify precisely and explore dif-
ferent kinds of effects they could discover in future replications
of their experiment and to understand what impact the particular
adaptive experimental design can achieve compared to traditional
approaches. Another related requirement demonstrated in the ex-
ample is to provide a set of custom data visualizations and data
analysis workflows tied to the experimental design. This avoids
potential issues arising from the application of unsuitable or sub-
optimal analytical methods. It allows us to understand not only
what we have learned – causal effects, but also how we did – the
impact of adaptation and personalization on students. Small sample
sizes are the most problematic area for all effect sizes considered, as
expected. Sadly, they are also typical for educational settings. We
will discuss some ways to alleviate limitations imposed by them in
section 5.

5 Overcoming Constraints of Classroom
Experiments

In the previous section, we focused on analyzing the performance
of adaptive experiments across classrooms of different sample sizes.

To bring the benefits of adaptive experimentation to a wide range of
real-world contexts, such experiments need to be applied not just to
ideal settings with large samples but also to smaller courses where
both traditional and adaptive experiments are not guaranteed to
deliver optimal results. While external researchers may want to run
experiments in ideal situations, a crucial design constraint emerges
when we account for what other stakeholders such as learning
designers want, as they may be more keen on bringing the practical
benefits of the experiments to their students, and have more on
more agency in continuous improvement and decision-making.

From our analysis of course sizes on OLI (see Table 3), 90% of
the courses on the plaftorm have fewer than or 113 students. In
such course contexts, different stakeholders may be interested in
adopting interventions that can potentially have a meaningful im-
pact in single-classroom settings. In Table 2, we list some examples
of interventions that can be initiated with different stakeholders
(researchers, learning designers, instructors) on different levels,
setting constraints for experimental design. Although there are no
ways to overcome the limit of the information that can be extracted
from small samples, the Bayesian nature of adaptive experiments
suggests some promising ways to help alleviate these constraints
and support instructors’ and learning designers’ agency in exper-
imentation and evidence-based decision-making. In this section,
we present two strategies that we found to be helpful in bringing
adaptive experiments to small courses – using prior information
and sharing experiments between courses.

5.1 Strategies for Overcoming Constraints for
Smaller Classroms

Starting Adaptive Experiment with Prior Information. While our
examples E1 and E2 (see Table 2) might look for solutions, working
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Table 3: Summary Statistics of Typical Classroom Sizes for
OLI.

Mean Median P0 P25 P50 P75 P80 P90 P100

54 26 11 19 26 41 51 113 2564

for a particular course section, we can incorporate prior information
into the experiment. For example, we can assume that prompts
working in other relevant courses might, but not necessarily will,
work the same way in ours and scale that assumption according
to our degree of belief and classroom size, balancing reliance on
existing evidence and the instructor’s judgment. In this case, our
course section builds on existing evidence, but converges to its own
solution by the end of the experiment. On the platform level, we can
support the search for relevant prior information, for example, by
allowing us to easily build on results from previous course iterations
or other sections while incorporating subjective beliefs of how our
section is similar or different or adding our alternative options
while building on proven defaults.

Shared Experiment Between Course Sections to Courses. Alterna-
tively, we can run an experiment (e.g., E2, E3) by pulling data across
multiple sections and courses, taking advantage of a larger sample
and faster convergence to better options. This option requires more
learning platform-supported coordination but might be critical to
empower collaboration.

6 Discussion and Conclusion
Discussion. As adaptive experiments combine experimental and

optimization perspectives [33], planning them should rely on more
elaborate analyses derived from the decision-making perspectives
of educational experimentation stakeholders: researchers, instruc-
tors, learning designers, and students [36]. Although the set of
metrics for analysis might be relatively simple, experimental plat-
form tools should focus on accounting for domain constraints and
provide actionable decision-making affordances for stakeholders.

In addition to providing tools for ex-ante power analysis, which
has become standard in experimentation [10] and remains critical
for adaptive experiments [33], we need tools specific to adaptive
experimentation that demonstrate decision consequences of partic-
ular patterns in early design stages using statistical data-informed
simulations grounded in field experiences and expert design work.
This will help stakeholders support a pragmatic, learning impact-
centered [40] view on adaptive experiments embedded within com-
plex real-world educational settings [36, 41].

In designing these tools, we should take a responsible and critical
approach, going beyond providing average rates and considering
how to communicate risks, suggesting adaptive designs only in
cases where analysis shows they may be warranted.

Finally, we emphasize that integrating adaptive experimenta-
tion within broader learning analytics and engineering workflows
should be a key direction for future work. Observational data from
existing systems can help identify intervention points, explore po-
tential contexts for personalization, and evaluate the alignment
between short-term measures used in adaptive experiments and

longer-term learning outcomes. In turn, adaptive experimentation
can enhance the causal grounding of learning analytics [12] and
help bridge the analytics-action gap [11, 17, 40].

Conclusion. In this paper, based on our experience designing and
using the EASI platform across multiple educational settings and
design iterations, centered around the XPRIZE Digital Learning
Challenge, we highlight the potential of adaptive experimentation
to improve learning experiences and outcomes, taking into account
the complexities of continuous improvement decision support in
modern learning environments.

We present data-informed lessons learned, best practices, and key
application scenarios for adaptive experimentation, emphasizing
the importance of stakeholder-centered design. Furthermore, we
provide practical recommendations for addressing the challenges
of implementing adaptive experiments in real educational settings,
particularly in smaller classrooms, which are crucial for providing
researchers, instructors, and learning designers with agency in
evidence-based continuous improvement of their courses.
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