
Exploring Metrics for the Analysis of Code Submissions in an
Introductory Data Science Course

Huy Anh Nguyen
hn1@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Michelle Lim
mlim1@andrew.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Steven Moore
stevenmo@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Eric Nyberg
ehn@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Majd Sakr
msakr@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

John Stamper
jstamper@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

ABSTRACT
While data science education has gained increased recognition
in both academic institutions and industry, there has been a lack
of research on automated coding assessment for novice students.
Our work presents a first step in this direction, by leveraging the
coding metrics from traditional software engineering (Halstead
Volume and Cyclomatic Complexity) in combination with those
that reflect a data science project’s learning objectives (number of
library calls and number of common library calls with the solution
code). Through these metrics, we examined the code submissions
of 97 students across two semesters of an introductory data science
course. Our results indicated that the metrics can identify cases
where students had overly complicated codes and would benefit
from scaffolding feedback. The number of library calls, in particular,
was also a significant predictor of changes in submission score and
submission runtime, which highlights the distinctive nature of data
science programming. We conclude with suggestions for extending
our analyses towards more actionable intervention strategies, for
example by tracking the fine-grained submission grading outputs
throughout a student’s submission history, to better model and
support them in their data science learning process.

CCS CONCEPTS
• Social and professional topics→ Student assessment;Com-
puting education.

KEYWORDS
Coding Metrics, Linear Mixed Model, Data Science Education, Pro-
gramming Analysis
ACM Reference Format:
Huy Anh Nguyen, Michelle Lim, Steven Moore, Eric Nyberg, Majd Sakr,
and John Stamper. 2021. Exploring Metrics for the Analysis of Code Submis-
sions in an Introductory Data Science Course. In LAK21: 11th International
Learning Analytics and Knowledge Conference (LAK21), April 12–16, 2021,

LAK21, April 12–16, 2021, Irvine, CA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8935-8/21/04.
https://doi.org/10.1145/3448139.3448209

Irvine, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3448139.3448209

1 INTRODUCTION
Learning to program is not easy, and much research has gone into
increasing success in teaching introductory computer science (CS1)
[29]. Both solid conceptual and procedural knowledge are required
to be good at programming; as a result, high failure and dropout
rates are often reported in CS1 courses [21]. Learning to program
in data science is even more difficult; unlike standard programming
courses that majorly focus on core computer science topics (e.g.,
data structures and algorithms), data science is always tangled with
mathematics, statistics, and specific aspects of various domains such
as economics, linguistics, and climatology. Covering this complex
skill set for students from an equally diverse set of backgrounds
further adds to the challenge of data science instruction [4].

Advances in educational data mining and learning analytics may
offer the key to resolve these challenges, as they have significantly
improved the learner experience in CS1 courses over the years
[8, 16, 28]. However, these techniques have not seen much adoption
in data science education, where the focus of existing research
remains at a high level of curriculum discussions [7, 32, 35] and
case studies of successful course design [2, 31]. Towards promoting
a more data-centered approach to evaluating and improving data
science courses, in this work, we analyzed the code submissions of
97 students in an introductory data science project. Our goal is to
identify suitable metrics that can accurately reflect the students’
progress and identify areas of improvement for the project. Using
a set of metrics from traditional software engineering, as well as
those derived from the project’s learning objectives, we examined
the following research questions:

(1) How do the metric values vary across the project tasks, and
how do they compare to the solution code metrics?

(2) How do the coding metrics relate to the submission run-
times?

(3) Which change in coding metric is indicative of a change in
submission score?

Through answering these questions, this work contributes key
insights into the large solution space that a data science task may
have, as well as the importance of library calls in data science
implementations. We also discuss the challenges in applying CS1

632

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3448139.3448209
https://doi.org/10.1145/3448139.3448209
https://doi.org/10.1145/3448139.3448209
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448139.3448209&domain=pdf&date_stamp=2021-04-12

LAK21, April 12–16, 2021, Irvine, CA, USA Huy Anh Nguyen, Michelle Lim, Steven Moore, Eric Nyberg, Majd Sakr, and John Stamper

Figure 1: An example project task with instructional text, docstring comments, and the template function for students to
implement.

analytic techniques to this domain, and outline important next
steps in better modeling and supporting students throughout their
learning process.

2 BACKGROUND
2.1 Related Work
Automated grading techniques and systems have been an important
part of recent advances in programming education [27, 36]. How-
ever, the output score alone may not be pedagogically meaningful
to the instructors or the students. Towards more fine-grained stu-
dent modeling through their code submissions, prior work has
investigated the use of coding metrics as a means of quantify-
ing the students’ progress [18]. The explored metrics range from
those in traditional software engineering (e.g., Halstead Volume
[12], Cyclomatic Complexity [23]) to those more aligned with the
assignment’s goal, for example object-oriented metrics [6] in Java
exercises. While many of these metrics only demonstrated weak
correlations with the students’ progress [15], they have seen usage
in informing programming task designs and revisions. For instance,
[10] proposed that each programming task can be measured in
terms of complexity, expressed via the solution code metrics, and
difficulty, captured by how students performed on it (e.g., failure
rate, median solving time); based on these definitions, a significant
discrepancy between the complexity and difficulty of a task would
indicate that it is problematic and should be revised.

However, these prior works have all taken place in the context
of introductory programming courses. It remains unclear if the
traditional coding metrics are applicable in data science. For ex-
ample, a study by [19] revealed that data science instructors and
practitioners often focus on teaching the tabular data frame as the
primary data structure, as opposed to those commonly seen in CS1

curriculum, such as linked lists and binary trees. The instructors
also indicated that even the use of loops was not necessary, as
canonical operations on data frames are supported by a wide range
of vectorized library calls. These insights imply that data science
codes would look very different from the programming code in
typical CS1 courses. Characterizing this difference is among the
primary goals of our research.

2.2 Course Description and Data Collection
Our analysis involves data collected from two semesters, Summer
2020 and Fall 2020, of a graduate-level introductory data science
course at an R1 university in the northeastern United States. The
course materials are divided into the conceptual components and
the hands-on projects. Students learned from six conceptual units
hosted on an e-learning platform, where each unit consists of read-
ing assignments, practice activities and weekly quizzes. They also
completed five individual Python coding projects in Summer 2020,
which cover the following topics: (1) problem representation, (2)
domain analysis and exploration, (3) domain data preparation, (4)
machine learning and model performance, and (5) model deploy-
ment and comparison; in Fall 2020, a sixth project on evaluation
optimization was added. Each project spans two weeks and involves
the students implementing between 10-15 data science tasks on a
template Jupyter notebook [17]. At any time before the project due
date, students could submit their code to the autograding system
and receive results after a few minutes, which include the grade
for each task, the stack trace in case of an exception, and the first
point of mismatch if the student’s output differs from the reference
output. There is no limit on the number of submissions, but there
is a limit on the code runtime; if a student’s submission exceeded
the project’s runtime threshold, it would not receive any points. In

633

Exploring Metrics for the Analysis of Code Submissions in an Introductory Data Science Course LAK21, April 12–16, 2021, Irvine, CA, USA

addition, each project imposes a constraint on the external libraries
and packages that students can use.

In the scope of this work, we focused on submission data from
Project 1. The project is an introduction to Numpy [14], Scipy [37]
and Pandas [24], three popular data science libraries for data pro-
cessing and numerical computations. In this project, students were
given a dataset of 100,000 movie ratings and needed to use Pandas
to perform basic dataframe manipulation (tasks 1-6), as well as
Numpy/Scipy to implement the collaborative filtering recommen-
dation algorithm (tasks 7-12). Figure 1 shows an example task in
the template Jupyter notebook provided to students.

Over the two semesters, there were 97 graduate students who
enrolled in one of six different STEM masters or doctoral programs.
The students completed 1107 submissions to Project 1. 14 submis-
sions had a compile error and received a score of 0; we also removed
these submissions from our analyses as their code content could not
be parsed. Therefore, our final sample consists of 1093 submissions
from 97 students. There were 113 submissions with a full score
of 100/100 coming from 76 students (multiple full-score submis-
sions could belong to one student if they continued submitting after
getting full scores to further optimize their code runtime).

Table 1: The list of metrics used in our analysis and their
definitions.

Metric Definition and Meaning

Halstead Vol-
ume

V = (N1 + N2) · log (n1 + n2) where N1, N2, n1,
n2 are the total number of operators, operands,
distinct operators, and distinct operands respec-
tively [12]. This metric represents the size, in bits,
of space necessary for storing the program.

Cyclomatic
Complexity

The number of linearly independent paths through
a program’s source code [23]. Our analysis uses
the Radon library [1], which computes this metric
as one plus the count of the following constructs:
if, elif, for, while, except, with, assert, com-
prehension and boolean operator.

Logical Line
of Codes

The number of executable statements in a program,
measuring its size and development efforts [26].

AST Node
Count

The number of nodes in the abstract syntax tree
representation of a program, which reflects the
count of distinct constructs in the code.

Library Call The number of calls to functions andmethods from
external Python libraries (in Project 1, these are
Numpy, Scipy and Pandas), which indicate the stu-
dent’s fluency with the provided libraries.

Solution
Library Call

The number of Library Calls that are in common
with those used in the solution code for the project
(provided by the course instructors).

3 METHODS
To see how students’ progress through the project can be reflected
in their code submissions, we experimented with a set of six coding
metrics as outlined in Table 1. Here we note that the first four met-
rics come from traditional software engineering measures and have

also been used to assess students’ works in introductory program-
ming courses [9, 15]. The last two metrics are our custom metrics,
motivated by Project 1’s learning objective of familiarizing students
with the common data processing libraries, which is an important
skill for data science practitioners [19]. To compute them, we iden-
tified all the functions and method calls in the abstract syntax tree
built from the input program, then traced their origins via the pro-
gram’s import statements. For example, if a program contains a call
to sp.diags and the statement import scipy.sparse as sp, we
can determine that sp.diags is a Scipy function call, which would
count towards the Library Call value. In each student submission,
we then recorded these metrics for each individual task as well as
for the entire code content.

4 RESULTS

Figure 2: Histogram of each metric value distribution in the
113 full-score submissions. The x-axis denotes the metric
values, and the y-axis denotes the number of students.

We first performed exploratory data analysis to visualize the
distribution of each metric. As the submission codes naturally get
longer and more complex when they include the implementations
for more tasks, in this step, we only considered the 113 full-score
submissions. In particular, we wanted to see how the full code
contents in these submissions vary in terms of the chosen metrics.
Figure 2 shows that there is indeed a wide variability across all
metrics, where the maximum metric value is always at least twice
as large as the minimum. This variability indicates that there are
notable differences among the submissions, even though they were
all at the completion stage of the project. For example, based on the
Logical Lines of Code distribution, we observed that some students
onlywrote 80 lines to implement all 12 tasks, while others tookmore
than 160 lines. To understand what these differences imply in terms

634

LAK21, April 12–16, 2021, Irvine, CA, USA Huy Anh Nguyen, Michelle Lim, Steven Moore, Eric Nyberg, Majd Sakr, and John Stamper

Figure 3: Spearman correlation matrix for the 6 metrics,
based on the 113 full-score submissions. HV, CC, LLC, AST,
LC and SLC indicate Halstead Volume, Cyclomatic Complex-
ity, Logical Lines of Code, AST Node Count, Library Call and
Solution Library Call respectively.

of student evaluation, our next step is to build regression models
from the chosen metrics. However, we first wanted to identify any
internal correlations among the metrics themselves. If a group of
metrics had a high degree of correlation, they could be considered
as conveying roughly the same information, and we would only
need to select one metric from that group for subsequent analyses.

Figure 3 shows the pairwise correlation heatmap, where the
following three pairs of metrics have a high correlation (with r ≥

0.60): Library Call - Logical Lines of Code (r = 0.65), AST Node
Count - Library Call (r = 0.75), and AST Node Count - Logical Lines
of Code (r = 0.84). In other words, Library Call, AST Node Count,
Logical Lines of Code are pairwise strongly correlated. Therefore, we
decided to select Halstead Volume, Cyclomatic Complexity, Library
Call and Solution Library Call, which are not strongly correlated
with one another, as our final set of metrics.

4.1 RQ1: How do the metric values vary across
the project tasks, and how do they compare
to the solution code metrics?

In this analysis, we only considered the 113 full-score submissions,
as they are functionally equivalent to the solution, i.e., they had
correct implementations for all the tasks; submissions with lower
scores either did not implement some tasks or implemented them
incorrectly, making their code metrics difficult to interpret. In each
full-score submission, we computed the coding metrics for each
individual task implementation. We then plotted the distribution of
these metric values per task in Figure 4, where each point on the line
graph indicates the mean value for a given task. The shaded region
denotes the 95% confidence interval of the metric distribution. We
also indicated the solution code metrics in red dots to facilitate the
comparison with the students’ codes.

For the first three metrics, while the line plots each follow a
different pattern, they all have peaks at task 6 and 11, which imply

Figure 4: Distribution of metric values across tasks from the
full-score submissions (denoted by the line plot) and the so-
lution code (denoted by the red dots).

that these were, to students, the more complex tasks in the project.
The solution code metric for task 11 is also high, so this task was
indeed intended to be challenging. On the other hand, there is
no notable peak at task 6 for the solution code, indicating that
most students’ implementations were more complex than necessary.
A similar gap between the students’ codes and solution code is
observed in task 10. This task can be solved by simply applying the
function from task 9 to the transpose of the input matrix; therefore,
the solution only contains one line of code. However, most students
did not realize this connection and instead implemented task 10
from scratch, resulting in more complicated code. Finally, the line
plot for Solution Library Call shows that, in most tasks, only about
30-50% of the library calls used in the solution code were in common
with those used in the students’ codes. In other words, students
were able to solve the project tasks with many library calls not used
by the solution.

In summary, we have identified variations in the coding metrics
across tasks, where task 11 could be considered the most complex.
At the same time, there were notable gaps in the code metrics
between the students’ and the solution’s implementations of task
6 and 9. To better understand these metric differences, we next
examined their relationships with the outcome of each submission,
which can be measured by the runtime and the output score.

4.2 RQ2: How do the coding metrics relate to
the submission runtimes?

For the same rationale outlined in RQ1, we only considered the 113
full-score submissions in this analysis. We then constructed a linear
regression model where the independent variables are the four
metric values of each submission, and the dependent variable is the
submission runtime. Our results in Table 2 showed that Library Call
is a positive and significant predictor of the code runtime. However,
we also noted that the R2 value of this regression model is quite
low (0.102), so our current coding metrics alone were not able to
fully capture the variance in submission runtime.

635

Exploring Metrics for the Analysis of Code Submissions in an Introductory Data Science Course LAK21, April 12–16, 2021, Irvine, CA, USA

Table 2: Results of the linear regression that predicts the submission runtimes based on the submission codingmetrics. (*) and
(**) indicate significance at the 0.05 and 0.01 levels respectively.

Coef Std Err t 95% CI

Intercept 107.1752 40.573 2.642 (*) (26.717, 187.633)
Halstead Volume -0.0114 0.022 -0.528 (-0.054, 0.031)
Cyclomatic Complexity 0.6093 0.815 0.747 (-1.007, 2.226)
Library Call 0.7443 0.254 2.934 (**) (0.241, 1.247)
Solution Library Call -0.9935 0.959 -1.036 (-2.894, 0.907)

Table 3: Results of the linear mixedmodel that predicts the change in submission scores based on the changes inmetric values.
(*) and (**) indicate significance at the 0.05 and 0.01 levels respectively.

Coef Std Err z 95% CI

Intercept 12.788 0.516 24.800 (**) (11.777. 13.798)
Halstead Volume 0.013 0.008 1.672 (-0.002, 0.029)
Cyclomatic Complexity -0.618 0.445 -1.389 (-1.489, 0.254)
Library Call 0.414 0.175 2.364 (*) (0.071, 0.757)
Solution Library Call -0.072 0.418 -0.172 (-0.891, 0.747)
Group Var 46.210

4.3 RQ3: Which change in coding metric is
indicative of a change in submission score?

For each student, we considered all of the unique score thresholds
that they obtained in the course of their submissions. For example,
if student A made four submissions s1, s2, s3, s4 with the following
scores: 10, 10, 50, and 100, A would have three score thresholds
- 10, 50, and 100. Next, we recorded the changes in score and in
coding metric values between the submission at each threshold.
With the example of A, we would record how much each coding
metric changed when their score went from 10 to 50, and when
their score went from 50 to 100. If there are multiple submissions at
a given threshold (e.g., s1 and s2 both scored 10 points), we would
consider only the first submission at that threshold (i.e., s1), in order
to fully capture the range of code changes that the student made to
advance to the next score threshold.

After extracting these score and coding metric differences, we
set up a linear mixed model as follows:

∆S ∼ ∆HV + ∆CC + ∆LC + ∆SLC + (1 | SID), (1)

where ∆S,∆HV ,∆CC,∆LC and ∆SLC are the differences between
each submission and the submission at the previous score thresh-
old (from the same student) in terms of score, Halstead Volume,
Cyclomatic Complexity, Library Call and Solution Library Call re-
spectively. Because each student contributed multiple data points,
we used the student identifier SID as the random effect. This factor
can be considered as a representation of each individual student’s
coding style. For example, one student may chain multiple function
calls in one line, while another saves each call output to a variable;
these different styles would lead to different baseline metric values,
which the random effect can account for.

With the submission selection criteria outlined for the hypothet-
ical student A earlier, we collected 365 data points for the linear
model (1) and implemented it using Python’s statsmodel library

[33]. Our results in Table 3 showed that LC, the change in Library
Call, is a significant positive predictor of the change in score. In
other words, an increase in the number of library calls used in the
student’s submission is most indicative of an increase in score.

5 DISCUSSION AND CONCLUSION
Our work investigated the coding metrics of student submissions
in an introductory data science project, as a first step in connecting
data science education and programming analysis. Through exam-
ining a combination of traditional software engineering metrics
(Halstead Volume, Cyclomatic Complexity) and data science-specific
metrics (Library Call, Solution Library Call), we have identified the
metrics that are indicative of the task complexity, submission run-
time and submission score. Here we further discuss how these find-
ings highlight the distinctive features of data science programming
and how they can contribute to providing instructional feedback in
an introductory course.

First, we observed a wide variety in coding metric values even
among the full-score submissions, which all perform the same tasks.
This diversity highlights a key difference between data science and
introductory programming: that the solution space of a data sci-
ence task can be large, even if the task is well-defined with a fixed
correct output (such as those used in this project). This insight is
further supported by comparing the students’ code metrics with the
solution’s; our visualization in Figure 4 showed that, in most cases,
the students’ code contents were distinct from the solution codes.
Most notably, the distribution of Solution Library Call remains low
throughout the tasks, indicating that, even when Project 1 was
intended to teach students about using data science libraries, the
library calls that they chose for their implementations were largely
different from what the instructors had anticipated. While prior re-
search in introductory programming has typically used the distance
between a student’s code and the solution code to measure their

636

LAK21, April 12–16, 2021, Irvine, CA, USA Huy Anh Nguyen, Michelle Lim, Steven Moore, Eric Nyberg, Majd Sakr, and John Stamper

progress [30], our findings indicate that its effectiveness in data
science may be limited. Students may still perform well even when
they they took different approaches from the solution. It is possible
that deviation from the solution can still be a meaningful metric,
but should be measured at a higher level than the code contents.
For example, in introductory programming, [20] has proposed a
mapping from the abstract syntax tree nodes to their correspond-
ing high-level concepts. Future works could construct a similar
mapping for data science codes, in order to capture the conceptual
gap between a student’s code and the solution’s, which may better
reflect their progress.

At the same time, identifying notable gaps between the students’
code metrics and the solution’s can also guide course improvement
strategies. If most students’ codes had lower metric values than the
solution code for a particular task, the students likely made use of a
shortcut through the task which the instructors did not anticipate.
In this case, the instructors should either redesign the task to pre-
vent this shortcut, or adjust its score weighting to account for the
lower-than-expected difficulty. While learning curve analysis has
also been applied to detect students’ shortcut approaches [13], this
technique requires fine-grained interaction data and a knowledge
component model [25, 34]; our visualization method can be consid-
ered a step in a similar direction, but relies only on the student’s
submission codes. On the other hand, the opposite scenario may
occur where the solution code metrics were lower than those of
most students, which we observed in task 6 and 10. The solution for
task 10, in particular, was very simple, but many students followed
a more complicated pathway because they did not realize the con-
nection with previous tasks. This is a potential area for providing
adaptive hint and feedback, where the autograder could display a
message such as "Your code is more complex than necessary. Think
about how you can utilize your implementation of task 9." As prior
works have demonstrated the effectiveness of code hints [30] (es-
pecially with textual explanations [22]) in programming exercises,
we expect a similar effect of the proposed hints in our domain of
data science education.

In our next analysis, we ran a linear regression model to examine
how each coding metric contributed to the submission runtime. We
noted that the model’s R2 is quite low, likely because the runtime
duration depends on the input dataset as well as the number of test
cases, which our model did not consider. On the other hand, we still
identified Library Call as a positive and significant predictor of the
submission runtime. This effect can be explained by the vectorized
nature of the library calls from Numpy/Scipy and Pandas [14]; in
particular, these library calls were designed to operate on an entire
vector or matrix. Despite being highly optimized, multiple library
calls still involved multiple traversals over the input dataset (with
100,000 rows in this project), which would lead to higher runtime.

Another measure of submission outcome that we investigated is
the output score; in particular, we wanted to see which change in
coding metric closely aligned with the change in score, when the
student’s score did change. To this end, we set up a linear mixed
model that predicted the change in score based on the change
in each coding metric, with the student ID acting as the random
effect. We found that Library Call is again a positive significant
predictor. In other words, the most indicative factor of an increase
in student score is that they used more library calls. A possible

explanation is that each project task is independent and has its own
implementation, so a student is more likely to use additional library
calls when they work on a new task, rather than when they debug
an already implemented task – in this case, they are also likely to
get higher score from the new task. More generally, this finding
highlights a similar observation from [19] – in their study of how
data science practitioners taught the subject, the authors noted an
emphasis on "connecting existing APIs together in order to shape
them for the analytic tasks at hand," as opposed to implementing
new functions or classes, which is more common in traditional
programming. In other words, an important learning objective for
data science novices is to acquire fluency in common data science
APIs; this is another distinctive feature of data science that should
be considered for research on coding analysis in this domain.

As a first step towards exploring the value of coding metrics
in data science education, our work has certain limitations that
we plan to address in future studies. First, to create a meaningful
context for metric comparison, the analysis so far has focused only
on a subset of the 1093 submissions to Project 1. For the next step,
we would like to investigate the full submission history of each
student in order to identify those who need additional support in
the course. This task would involve examining more fine-grained
submission outputs, such as the failed test cases or error message
logs [3], and potentially integrating other student behavior data
in the course that can reflect their learning habit [11]. Second, we
plan to collect data from other data science courses at different
institutions to validate the generalizability of our findings. Third,
we should emphasize that data science is a highly interdisciplinary
area, where the nature of the code in each sub-domain may be very
distinct. For example, a project on web scraping would place less
emphasis on vectorized operations but more on text parsing and
cleaning. Therefore, it is important to examine each sub-domain
separately, while also identifying the core "data science thinking"
components [5] that transfer between sub-domains.

As demand for data science rapidly increases, universities and
organizations are actively expanding their DS course offerings.
However, our research indicates that a more evidence-based ap-
proach to teaching and learning data science is needed, due to the
distinctive nature of this domain. In particular, we found that the
number of library calls, rather than traditional metrics used in CS1
courses, is a significant predictor of code runtime and changes in
score. This result reflects the importance of utilizing existing data
science libraries in solving analytic problems; it can thus be used
by instructors and department heads to revise their curriculum and
assessment mechanisms accordingly. We also showed that com-
paring the metric values of the student codes and the reference
code can reveal which tasks are easier or harder than expected,
which further aids instructional revision. These results in turn lay
the foundation for follow-up work on implementing data-driven
and timely interventions, which would ultimately contribute to a
scalable workflow for personalized student support in data science
education.

REFERENCES
[1] [n.d.]. Radon. https://github.com/rubik/radon.
[2] Craig Anslow, John Brosz, Frank Maurer, and Mike Boyes. 2016. Datathons: an

experience report of data hackathons for data science education. In Proceedings

637

https://github.com/rubik/radon

Exploring Metrics for the Analysis of Code Submissions in an Introductory Data Science Course LAK21, April 12–16, 2021, Irvine, CA, USA

of the 47th ACM Technical Symposium on Computing Science Education. 615–620.
[3] Elena García Barriocanal, Miguel-Ángel Sicilia Urbán, Ignacio Aedo Cuevas, and

Paloma Díaz Pérez. 2002. An experience in integrating automated unit testing
practices in an introductory programming course. ACM SIGCSE Bulletin 34, 4
(2002), 125–128.

[4] Robert J Brunner and Edward J Kim. 2016. Teaching data science. Procedia
Computer Science 80 (2016), 1947–1956.

[5] Longbing Cao. 2018. Data Science Thinking. In Data Science Thinking. Springer,
59–90.

[6] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[7] Richard DDe Veaux, Mahesh Agarwal, Maia Averett, Benjamin S Baumer, Andrew
Bray, Thomas C Bressoud, Lance Bryant, Lei Z Cheng, Amanda Francis, Robert
Gould, et al. 2017. Curriculum guidelines for undergraduate programs in data
science. Annual Review of Statistics and Its Application 4 (2017), 15–30.

[8] Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski,
and Satabdi Basu. 2017. An instructor dashboard for real-time analytics in
interactive programming assignments. In Proceedings of the Seventh International
Learning Analytics & Knowledge Conference. 272–279.

[9] Tomáš Effenberger, Jaroslav Cechák, and Radek Pelánek. 2019. Difficulty and
Complexity of Introductory Programming Problems. (2019).

[10] Tomáš Effenberger, Jaroslav Čechák, and Radek Pelánek. 2019. Measuring Diffi-
culty of Introductory Programming Tasks. In Proceedings of the Sixth (2019) ACM
Conference on Learning@ Scale. 1–4.

[11] Seth Copen Goldstein, Hongyi Zhang, Majd Sakr, Haokang An, and Cameron
Dashti. 2019. Understanding how work habits influence student performance. In
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer
Science Education. 154–160.

[12] Maurice Howard Halstead et al. 1977. Elements of software science. Vol. 7. Elsevier
New York.

[13] Erik Harpstead and Vincent Aleven. 2015. Using empirical learning curve analysis
to inform design in an educational game. In Proceedings of the 2015 Annual
Symposium on Computer-Human Interaction in Play. 197–207.

[14] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature 585,
7825 (2020), 357–362.

[15] Petri Ihantola and Andrew Petersen. 2019. Code complexity in introductory
programming courses. In Proceedings of the 52nd Hawaii International Conference
on System Sciences.

[16] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
et al. 2015. Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. 41–63.

[17] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows.. In ELPUB. 87–90.

[18] Pardha Koyya, Young Lee, and Jeong Yang. 2013. Feedback for programming
assignments using software-metrics and reference code. International Scholarly
Research Notices 2013 (2013).

[19] Sean Kross and Philip J Guo. 2019. Practitioners teaching data science in industry
and academia: Expectations, workflows, and challenges. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–14.

[20] Andrew Luxton-Reilly and Andrew Petersen. 2017. The compound nature of
novice programming assessments. In Proceedings of the Nineteenth Australasian
Computing Education Conference. 26–35.

[21] Sohail Iqbal Malik. 2018. Improvements in introductory programming course:
action research insights and outcomes. Systemic Practice and Action Research 31,
6 (2018), 637–656.

[22] Samiha Marwan, Joseph Jay Williams, and Thomas Price. 2019. An Evaluation of
the Impact of Automated Programming Hints on Performance and Learning. In
Proceedings of the 2019 ACM Conference on International Computing Education
Research. 61–70.

[23] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[24] Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.

[25] Huy Nguyen, Yeyu Wang, John Stamper, and Bruce M McLaren. 2019. Using
Knowledge Component Modeling to Increase Domain Understanding in a Digital
Learning Game. International Educational Data Mining Society (2019).

[26] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007. A SLOC
counting standard. In Cocomo ii forum, Vol. 2007. Citeseer, 1–16.

[27] Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das, Amey
Karkare, and Arnab Bhattacharya. 2017. Automatic grading and feedback using
program repair for introductory programming courses. In Proceedings of the 2017

ACM Conference on Innovation and Technology in Computer Science Education.
92–97.

[28] Thomas Price, Baker Franke, Shuchi Grover, and Monica M McGill. 2020. Using
Data to Inform Computing Education Research and Practice. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. 175–176.

[29] Keith Quille and Susan Bergin. 2019. CS1: how will they do? How can we help?
A decade of research and practice. Computer Science Education 29, 2-3 (2019),
254–282.

[30] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in
vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37–64.

[31] Jeffrey Saltz and Robert Heckman. 2016. Big Data science education: A case
study of a project-focused introductory course. Themes in science and technology
education 8, 2 (2016), 85–94.

[32] Jeffrey S Saltz, Neil I Dewar, and Robert Heckman. 2018. Key concepts for a data
science ethics curriculum. In Proceedings of the 49th ACM technical symposium
on computer science education. 952–957.

[33] Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical
modeling with python. In 9th Python in Science Conference.

[34] John C Stamper and Kenneth R Koedinger. 2011. Human-machine student model
discovery and improvement using DataShop. In International Conference on Arti-
ficial Intelligence in Education. Springer, 353–360.

[35] Rong Tang and Watinee Sae-Lim. 2016. Data science programs in US higher
education: An exploratory content analysis of program description, curriculum
structure, and course focus. Education for Information 32, 3 (2016), 269–290.

[36] Leo C Ureel II and Charles Wallace. 2019. Automated Critique of Early Pro-
gramming Antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 738–744.

[37] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature methods 17, 3 (2020), 261–272.

638

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Course Description and Data Collection

	3 Methods
	4 Results
	4.1 RQ1: How do the metric values vary across the project tasks, and how do they compare to the solution code metrics?
	4.2 RQ2: How do the coding metrics relate to the submission runtimes?
	4.3 RQ3: Which change in coding metric is indicative of a change in submission score?

	5 Discussion and Conclusion
	References

