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Abstract. The Hint Factory is a method of automatic hint generation that has
been used to augment hints in a number of educational systems. Although the
previous implementations were done in domains with largely deterministic
environments, the methods are inherently useful in stochastic environments with
uncertainty. In this work, we explore the game Connect Four as a simple domain
to give decision support under uncertainty. We speculate how the implemen-
tation created could be extended to other domains including simulated learning
environments and advanced navigational tasks.
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1 Introduction and Related Work

Adaptive learning through the use of intelligent tutoring systems (ITS) have been
shown to increase overall learning and decrease the time needed to mastery (Koedinger
et al. 2013). To overcome the difficulty of ITS creation, developers have turned to
authoring tools, like CTAT (Aleven et al. 2006) or data driven techniques (Stamper
et al. 2007). While large educational data repositories like DataShop (Stamper et al.
2010) exist for many traditional educational systems, one area that has been less
explored is decision support systems in domains that include multiple interacting
students (or players or agents). These domains are significantly more complex because,
unlike a traditional educational system, a specific action in these domains by a student
may not have a deterministic outcome. In this work, we explore how a technique called
the Hint Factory (Stamper et al. 2008) can be used for decision support (hints and
feedback) in adversarial domains and specifically implement the technique using a
Connect Four data set.

Previous work has utilized datasets from solved two-player games, such as Connect
Four, often for reinforcement learning (RL) and temporal difference learning
(TDL) tasks. One such study found that using a self-learning agent operating with the
Minimax algorithm required 1.5 million games to establish an 80% success rate (Thill
et al. 2012). We look to show how well the Hint Factory can be utilized in such
domains, like adversarial games, in order to provide decision support in the form of
hints and feedback.
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The Hint Factory provides context specific hints to students using a novel technique
that creates graphs of past student solutions from student log data, which can then be
used to suggest the best step for a student to solve the problem based on their current
state in the graph. The Hint Factory, applied in a tutor for teaching deductive logic
proofs, has been shown to significantly increase learning and reduce attrition (Stamper
et al. 2011). Determining the timing and frequency of hints is a particular challenge, but
studies suggest that offering hints on demand, instead of proactively, can have positive
effects on learning (Razzaq and Heffernan 2010). While some studies have suggested
as much as 72% of help-seeking behaviors can be unproductive (Aleven et al. 2004),
Shih’s work suggests that some of these behaviors are in fact helpful. They argue that
using help to achieve a bottom-out hint can be seen as looking for a worked example,
an effective learning strategy (Shih et al. 2011). On-demand, context-specific Hint
Factory hints and feedback are effective in single user educational technologies and
have been shown to significantly help students complete more problems resulting in
higher outcomes on post tests (Stamper et al. 2011).

In Connect Four, there are three possible states for each of the forty-two available
game spaces, with a game board configuration consisting of six rows and seven col-
umns. The space can be occupied by the turn players piece, the opponent’s piece, or it
can be empty. Early work by Allis (1988) found that after ruling out possible illegal
configurations that were present in the initial estimates, the possible board configura-
tions were close to an upper bound of 7.1 * 1013. More recently, it was determined
using binary decision diagrams that there are exactly 4,531,985,219,092 legal board
configurations (Edelkamp and Kissmann 2008).

A key feature of the Hint Factory is the use of a Markov Decision Process (MDP) to
create a policy based on data from previous attempts at problems in an educational
system (Stamper 2006). The resulting policy allows the Hint Factory to determine the
next best state and action a student can take. The features of the state and action are
used to generate hints and feedback for the student or user (Barnes et al. 2011). In this
work, states are represented by the current configuration of the Connect Four board at a
given time step and a time step is the state of the board after both players have made
their move. Actions cause the current state to transition into a new state, for this game
there are at most seven possible actions represented by the column a game piece can be
dropped into. Transitions, which have an associated probability, is the process of
entering a specific new state, based on the current state and the player’s chosen action.
In Connect Four, a given state-action pair can result in at most seven new states,
without accounting for the following adversarial agent response, which also moves into
one of the seven available columns. This means that at most one state can lead into
forty-nine following states accounting for both players’ actions.

Rewards are a numerical value tied to entering a new state, we assign a high value
for a winning endgame state, and a high negative value for a losing endgame state, and
0 for an endgame state resulting in a draw. All other game states begin with a value of 0
and then value iteration is applied to create a policy for the MDP (Sutton and Barto
1998). Our implementation utilizes a greedy policy, which prioritizes being on a path
toward any winning state, regardless of how many turns it took. Finally, the value is the
expected reward starting from a state, taking an action, and then following the given
policy in place.
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2 Implementation

To collect the Connect Four data, we used a web-based implementation with the logic
of the game written in TypeScript (Anggara 2018). The program puts two computer
players against one another to simulate the gameplay, recording each of their moves. In
total we collected five thousand games played between the two computer players.

Both computer players used the same logic to play the game, which is the Minimax
algorithm with alpha-beta pruning. The Minimax algorithm looks at all possible states,
determines the worst possible outcome, and then selects a possible state that has the
least worst outcomes (Edwards 1954). One non-standard modification we did to the
algorithm is that the first move for each computer player is randomized. We found that
causing each player’s first move to randomly be placed in one of the seven columns
created a greater diversity of games that closely resembled gameplay between two
human players. Additionally, Minimax uses a heuristic function that weighs a reward in
the closer future worth more than the same reward in the distant future. This means it
favors moves that win the next turn, prevent the opponent from winning, and gravitate
toward the center of the game board, as a human player would.

Using Python, we implemented a version of the Hint Factory for Connect Four. Our
implementation follows a greedy policy that prioritizes the highest immediate reward,
regardless of what the future rewards might be. While this may seem like an impatient
policy, the adversarial and stochastic nature of Connect Four makes policies relying on
potential future rewards more risky. With our aforementioned policy, the value for the
states is the reward of the greatest state-action pairing. It indicates which action to
select, based on the calculated rewards with transition probabilities, that leads to a state
most commonly found on the path to a winning game.

3 Results and Discussion

Our dataset consists of 5,000 Connect Four games, with an average of twenty-six turns
(13 states) per game. If we use that average and process all 5,000 games, it results to
65,000 states. However, when we process all 65,000 states for the games, only 2,606
(4.15%) of that total are unique game states. Table 1 summarizes the unique states
encountered at different processing increments of the total games.

Table 1. Number of unique states generated from games played in a simulated study.

Games processed Unique states Percent increase

100 797 –

500 1,531 92.10
1,000 1,865 21.82
2,000 2,197 17.80
3,000 2,386 8.60
4,000 2,510 5.20
5,000 2,606 3.82
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As noted, the percentage of new states encountered continues to decrease, as
expected, as we introduce more games. While there are over 4.5 trillion legal board
states, many of them will not be reached if players are following general strategies of
winning. For instance, human players might follow the strategy of trying to maximize
their game pieces in the center columns, causing many of the states to revolve around a
similar configuration. This is the case for our agents, both of which follow the same
Minimax algorithm and heuristic function in attempts to win. The observed games
begin randomly, but the agent’s moves tend to gravitate toward the center as they
follow the heuristic for winning, much like a human player might.

Using the first 1,000 games to build the model, we were able to provide hints for
roughly 50,000 of the 52,000 states that were present in the following 4,000 games.
The 52,000 states making up the later 4,000 games includes repeated states, as some of
the games followed the same sequence. For our 5,000 observed games, 1,123 of them
were unique. This reduces the space from 65,000 total states to 14,600 states if we only
include unique games. Building the model based off the first 1000 random games
recorded yields 1,865 unique states for our system. Using that data, we were able to
provide a hint, suggesting the next optimal move to the user, for all but 1,931 of the
encountered states in the remaining 4,000 games. That results in this implementation
being able to provide a hint 87.23% of the time when using just the first 20% of the
recorded data.

Next-step hints, such as the ones generated by our system, are often not as
descriptive as instructor generated ones, causing some educators to doubt their effec-
tiveness for learning. However, such hints have been proven effective, as in a study by
Rivers (2017) which resulted in students spending 13.7% less time on practice while
achieving the same learning results. Paquette et al. (2012) found that next-step hints
yielded increased learning gains within an ITS, compared to offering only flag feed-
back, and that they were as efficient and appreciated as instructor generated hints. In
stochastic learning environments that often lack hints altogether, generating next-step
hints using Hint Factory techniques can improve educational effectiveness and easily
integrates into an ITS or other educational system.

Increasing complexity is brought on from adversarial agents when a policy is being
determined for the system. An adversarial agent creates uncertainty on what the state
will be, even when the system suggests a particular action for the player. In the case of
our Connect Four implementation, it is not truly random as a heuristic is being followed
via the Minimax algorithm. We can offer a hint, suggesting where the player should
place their game piece, based on what we have previously seen and its success.
However, we have no other source that suggests what action the adversarial agent will
take, in this case the column into which they will drop their game piece. This type of
uncertainty can make certain policies seemingly optimal, but they might not be as
successful when different data is utilized to build the model or when the adversarial
agent plays more randomly. Such uncertainty has previously made these domains
difficult to provide next-step hints for, as the following state remains unknown.

Hints are effective for student learning and have been proven effective in open-
ended domains (Stamper et al. 2011; Rivers 2017), yet their data-driven implementa-
tion remains difficult in complex stochastic environments such as immersive training
simulation environments One instance of this in chemistry is the VLab, a virtual
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environment for students to conduct experiments and interpret the reactions (Tsovaltzi
et al. 2010). If students are working on a stoichiometry problem, the reaction will vary
based on how much and what type of a certain chemical they add, thus dictating how
much of another substance they need to add next. Detailed hints for a system may be
hard to generate because they are dependent on the many combinations of chemical
type and quantity that could be added. However, it would be a good fit for our
techniques, using either collected or simulated student data, to provide hints.

In physical stochastic environments, such as driving a car or operating a robotic
arm, many adversarial forces are at play, such as objects in the path or even gravity.
Next-step hints in such domains can provide needed decision support and be generated
using similar methods as applying the Hint Factory to Connect Four, without requiring
mass amounts of data or computational power. In the realm of robotics, Lego Mind-
storms have been a popular and effective mechanism for teaching middle and high
school students programming and computational thinking (Mosley and Kline 2006).
Such hints could assist students in the debugging of their robots, as they get them to
perform a given task, taking into account the physical forces they encounter. Similar
techniques could be applied to programmatic physics engines used for student exper-
imentation, which often have many reactive forces at play.

4 Conclusion and Future Work

The stochastic feature of adversarial game environments naturally fit the Hint Factory’s
underlying MDP mechanisms. The main contribution of this work is to show how the
Hint Factory can be used to create a hint and feedback policy in an adversarial game,
that can be extended to more complex educational domains. The novel implementation
in this stochastic domain shows that with a relatively small selection of the overall state
space, we can provide coverage to provide hints and feedback for a large percentage of
commonly seen states. This has real implications for many other multiagent and
adversarial game and learning environments.

We see some obvious next steps for this work in other multi-agent environments,
particularly simulations of the physical world where many forces are at play. Deter-
mining what to track as part of the state and what encompass an action will need to be
addressed as we move into more complex stochastic domains. Next we plan to execute
experiments using the hint generations to see if we get similar gains to the Hint Factory
implementations in deterministic domains. We also want to look at how human users
learn from the suggested hints and mimic any strategies being conveyed.
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