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Abstract: Combining assessment items with their hypothesized knowledge components 

(KCs) is critical in acquiring fine-grained data on student performance as they work in an ed-

tech system. However, creating this association is an arduous process and requires substantial 

instructor effort. In this study, we present the results of crowdsourcing KCs for problems in 

the domain of mathematics and English writing, as a first step in leveraging the crowd to 

expedite this task. We presented crowdworkers with a problem in each domain and asked 

them to provide three underlying skills required to solve it. These inputs were then analyzed 

through two topic modeling techniques, to compare how they might cluster around potential 

KCs. Results of the models’ output were evaluated against KCs generated by domain experts 

to determine their usability. Ultimately, we found that half of the crowdsourced KCs matched 

expert-generated KCs in each problem. This work demonstrates a method to leverage the 

crowd’s collective knowledge and topic modeling methods to facilitate the process of 

generating KCs for assessment items, which can be integrated in future learnersourced 

environments. 

 
Keywords: Knowledge Component, Crowdsourcing, Topic Modeling, Text Mining, Knowledge 

Tracing, Intelligent Tutoring Systems 
 

1. Introduction 

 
Many educational technologies, such as intelligent tutoring systems and online courseware, utilize 

knowledge component modeling to support their adaptivity. This treats student knowledge as a set of 

interrelated KCs, where each KC is “an acquired unit of cognitive function or structure that can be 

inferred from performance on a set of related tasks” (Koedinger, Corbett, and Perfetti, 2012). 

Operationally, a KC model is defined as a mapping between each question item and a hypothesized set 

of associated KCs that represent the skills or knowledge needed to solve that item. This mapping is 

intended to capture the student’s underlying cognitive process and is vital to many core functionalities 

of an intelligent educational software, enabling features such as adaptive feedback and hints (Moore 

and Stamper, 2019).  

 The construction of such a mapping is typically carried out by learning science practitioners, 

such as subject matter experts, cognitive scientists and learning engineers, who inspect the materials 

and assign one or more KCs to each question. Once student data has been collected, the initial mapping 

can then be improved as poorly associated KCs come to light (Corbett and Anderson, 1994). As the 

next step, instructional designers are often leveraged to revise the KC model; however, this is often a 

time-consuming task, making continuous iteration challenging. While machine learning methodologies 

have been developed to assist in the automatic identification of new KCs, prior research has shown that 

human judgment remains critical in the interpretation of the improved model and acquisition of 

actionable insights (Liu and Koedinger, 2017; Nguyen et al., 2019). 

 An emerging area that has the potential to provide the human resources needed for scaling KC 

modeling is crowdsourcing. Over the last decade, crowdsourcing has become a prominent model of 

distributed problem-solving, especially on tasks that are doable by humans, but difficult for computers 

(Yuen, King, and Leung, 2011). It has also seen wide usage in academic research as a source of training 

data for machine learning, support for integrated workflows, and assistance to domain experts (Kobren 

et al., 2014). However, to our knowledge, there has been minimal prior work that employs 

crowdsourcing in KC model construction and refinement (Moore et al., 2020a). 



 Therefore, as a first step towards examining and promoting the feasibility of crowdsourced KC 

modeling, we studied how crowdworkers can provide the underlying KCs for an assessment activity. 

Using a crowdsourcing platform, we gathered participants with no background in pedagogical training 

and varying levels of math and English writing expertise. We then asked them to provide three KCs 

needed to solve a given problem in the domains of math and English writing. We took these 

contributions and input them to two topic models to analyze how they might be clustered in useful ways, 

indicative of any KCs. Our research questions are as follows: 

RQ1: How do crowdsourced knowledge components compare to expert-generated ones in each 

problem? 

RQ2: How might we leverage topic modeling to generate groupings of participant contributes indicative 

of expert-generated knowledge components?  

 

From these questions, our goal is to see whether it is possible to employ crowdsourcing to generate a 

baseline KC model that is both interpretable and able to be translated into a more learnersourced context. 

 

2. Related Work 

 
KC models are typically developed by domain experts through Cognitive Task Analysis methods 

(Schraagen, Chipman, and Shalin, 2000), which lead to effective instructional designs but require 

substantial human efforts. In recent decades, this method has been greatly enhanced by data-driven 

techniques. For instance, (Corbett and Anderson, 1994) showed that identifying the “blips” or “peaks” 

in the KCs’ learning curves can help uncover new KCs that were not accounted for in the initial model. 

Other works have formalized the concept of KC mapping through q-matrix or skill matrix (Koedinger 

et al., 2004). Under this representation, several data mining techniques can be applied to assist in the 

refinement of KC models, for example by extracting relevant KCs from data and merging/splitting KCs 

to yield a better fit (Koedinger, McLaughlin, and Stamper, 2012). It should be noted that while these 

fully automated methods can potentially discover models with better performance (in terms of statistical 

metrics such as AIC, BIC and cross validation score), they suffer from a lack of interpretability 

(Stamper, Koedinger, and Mclaughlin, 2013). On the other hand, (Koedinger et al., 2013) showed that 

a refined KC model that results from both human judgment and computational metrics can help students 

reach mastery in 26% less time. More generally, as pointed out in (Liu, McLaughlin, and Koedinger, 

2014), the inclusion of human factors in the KC modeling process can be advantageous, leading to 

actionable lessons that can be implemented in follow-up studies. Our work belongs to the same line of 

research, in which we try to leverage human insights, albeit from crowdworkers instead of traditional 

teachers and educators. 

Traditionally, crowdsourcing can be carried out in either a marketplace, e.g. Mechanical Turk, a 

game environment, e.g. FoldIt (Cooper et al., 2010), or an online community, e.g. Stack Overflow. In 

this study, as a starting point, we recruit workers through the paid platform Amazon’s Mechanical Turk 

(AMT); ultimately, however, we would like to transition to a more community-based method. It has 

been shown that, by offering an online course, one can attract a crowd of thousands or more students, 

who can be leveraged to improve the course itself (Weld et al., 2012). This is a skilled crowd, one which 

has at least the basic skill sets and prerequisites for the course. The use of such crowd workers is 

common in educational technology, often in a way that leverages the workers’ content knowledge 

(Anderson, 2011; Moore et al., 2020b). Recently, crowdsourcing has become increasingly popular for 

content development in the education domain (Paulin and Haythornthwaite, 2016). 

 Companies such as Coursera and Duolingo also employ this approach to have their learners 

make improvements to the content as they use it. As another example, the process of crowdsourcing 

data from learners, or learnersourcing, has been used to identify which parts of lecture videos are 

confusing (Kim et al., 2014), and to describe the key instructional steps and subgoals of how-to videos 

(Kim, Miller, and Gajos, 2013). More recently, learnersourcing contributed to not only the annotation 

of existing educational content, but also the creation of novel content itself. In particular, (Williams et 

al., 2016) explored a crowdsourcing-based strategy towards personalized learning in which learners 

were asked to author paragraphs of text explaining how to solve statistics problems. The explanations 

generated by learners were found to be comparable in both learning benefit and rated quality to 

explanations produced by expert instructors.  



As the fields of natural language processing and text mining continue to advance, they have seen 

increasingly wider usage in education technology to help automate intensive tasks (Brack et al., 2020). 

Previous works have looked at using different machine learning models (Pardos and Dadu, 2017; 

Patikorn et al., 2019) and utilizing a search engine (Karlovčec, Córdova-Sánchez, and Pardos, 2012) to 

tag educational content with KCs. Recent efforts have utilized topic modeling on a set of math problems 

from an intelligent tutoring system to assist in the labeling of KCs (Slater et al., 2017). While their 

initial model had promising results, there was an issue of human interpretability for the topics it 

produced, that may be relieved by different models (Lee et al., 2017). Much of the work in this space is 

focused on predicting KCs for content, after being trained on similar KC-tagged problems. Few studies 

have attempted to leverage text mining techniques to generate KCs for content, with no training or 

prediction modeling involved. A previous study made use of the same two topic modeling techniques 

this study utilizes, but for the context of classifying programming problems (Intisar et al., 2019). They 

found a series of beneficial trade-offs between the models in terms of accuracy and dimensionality, 

which we build upon with our work.  

 

3. Methods 

 
The study consists of two related experiments that differ in their domain content for a specific part of 

the task. The first domain is mathematics, with a focus on the area of shapes, such as squares and 

rectangles. The second domain is English writing, with a focus on prose style involving agents and 

clause topics. The math content is at the middle school level and the writing content at the undergraduate 

level in the United States. For both domains, we conducted an experiment using the Amazon 

Mechanical Turk (AMT) platform. Eighty unique crowd workers on AMT, known as turkers, completed 

the math experiment and sixty unique turkers completed the writing, for a total of 140 participants. 

Thirteen participants in the Writing experiment were removed from our analyses due to submitting 

invalid responses that indicated either a complete misunderstanding of the experiment instructions or 

behavior similar to a bot. Filtering these invalid participants left us with 47 total participants in writing, 

combined with the 80 from math, for a total of 127 participants. Among these participants, 55 self-

identified as female and 72 as male. The mean selected age range was 35-44. All participants reported 

having at least a high school degree or equivalent. Additionally, none of the participants indicated that 

their occupation directly involved the use of geometry or writing prose. In each experiment, the tasks 

took roughly five minutes to complete. Participants were paid $0.75 on completion, providing a mean 

hourly wage of $9. 

 In the main task of the experiment, participants were given a word problem and asked to list 

three KCs that are required to solve the problem. The math experiment problem is about finding the 

area of a shape with two structures, while the writing experiment problem involves the revision of a 

sentence (Figure 1 and 2). The prompt for KCs was “As concisely as possible, please indicate a skill 

required to answer the above math problem about the wall.” in the math experiment and “As concisely 

as possible, please indicate a skill required to answer the above question that involved revising the 

sentence.” in the writing experiment. Note that the prompt uses the term “skill” rather than “knowledge 

component” to avoid jargon that may be confusing. 

 

3.1  Math and Writing Experiments 

 
The math word problem for which participants were asked to generate KCs is shown on the left side of 

Figure 1. This problem, along with the two priming questions, comes from a dataset titled ‘Geometry 

Area (1996-97) [KRM]’, which was used in a previous study of a geometry cognitive tutor (Stamper 

and Koedinger, 2011). An expert instructor familiar with the domain knowledge and KC modeling 

process tagged this problem with three KCs as described in Table 1. These will serve as a baseline for 

our comparison with the turkers’ generated KCs. The word problem for which participants were asked 

to generate KCs is shown on the right side of Figure 1. This problem comes from an online prose style 

course for freshmen and sophomores at a four-year university in the United States. Similar to the math 

experiment, we use four KCs provided by an expert instructor (Table 1) as a baseline for comparison 

 



 
The height of a wall is 25.0’ and a 8’ x 20.0’ 

rectangular door is positioned on the wall such as 

there is 8’ of wall remaining on the left side and 4’ 

of the wall remaining on the right side. 

 

Find the area of the wall to be painted. Do not paint 

the door. _________ 

Revise the sentence below so that the 

agent is in the subject position of a 

complete sentence. use the same verb 

tense in your revision as in the original. If 

the agent is unstated, supply a plausible 

one. Try to retain as much of the original 

sentence’s meaning as you can. 

 

Various directions for future research 

are suggested by this study. 

 
Your answer: ____________________________ 

 

Figure 1: The math and writing word problems that participants provided three skills for in both 

conditions in either the math or writing experiment. 

 
Table 1. Expert-generated KCs in the math and writing experiment, domain code “M” for math and 

“W” for writing. 

KC (Domain) Definition 
compose-by-addition (M) In an equation such as a + b = c, given any two of a, b or c, find the 

third variable. 
subtract (M) Subtract the area of one shape from another. 
rectangle-area (M) Finding the area of a rectangle shape. 

id-clause (W) Identify the clause-level topic of a sentence. 
discourse-level (W) Keep the discourse-level topic of the sentence in focus. 

    subject-position (W) Assess whether an entity is a subject. 
verb-form (W) Transform a passive verb to an active verb. 

 

3.2 Topic Modeling & Evaluation 
 

Topic models estimate latent topics in a document from word occurrence frequencies, based on the 

assumption that certain words will appear depending on potential topics in the text. To create clusters 

that were easier to quickly process and identify the common themes of the crowdworker contributions, 

we leveraged topic modeling. The crowdsourced KC text was lemmatized and stop words were 

removed, using a common NLP library in Python (Bird, Klein, and Loper, 2009). No further text 

processing was performed on the crowdsourced KC data before running them through the topic models, 

as we wanted results without fine-tuning any parameters or heavily processing the data. To support 

replicability, the code used to generate both the topic models used in this study can be found at: 

https://github.com/StevenJamesMoore/ICCE2020/blob/master/topic_models.ipynb. 

 The first topic modeling technique we used is Latent Dirichlet Analysis (LDA (Blei, Ng, and 

Jordan, 2003)). LDA maps all documents, in this case the participant-generated KCs for the problems, 

to a set number of topics in a way such that the words in each document are captured by the topics 

(AlSumait et al., 2009). For this process we set the number of topics to five, as the math problem has 

three expert-generated KCs and the writing problem has four expert-generated KCs. We wanted a topic 

number similar to the actual number of expert KCs, but not limited to it, in case participants contributed 

potentially novel or latent KCs of the problems. Additionally, in this case the documents across our 

corpus are small in length, often only consisting of a few words or phrases. This is not a traditional 

document used by LDA, which generally has a topic characterized by a distribution over words (Yau et 

al., 2014). However, the model is still able to label skills from the brief text and identify relationships 

between the words that prove useful (Tong and Zhang, 2016). 



 Non-negative Matrix Factorization (NMF (Lee and Seung, 2001)) was the second topic 

modeling technique we used, which conceptually outputs topics made up of term clusters from the 

documents fed into it. NMF uses linear algebra for topic modeling by identifying the latent structure in 

data, the participant-generated KCs for the problems, represented as a non-negative matrix (Luo et al., 

2017). Again, the topic number for this model was also set at five and the other parameters of the code 

can be accessed via the GitHub link. We chose this for the second topic modeling method as it 

successfully has been used in several related educational contexts previously, in order to map skills to 

assessment items and improve Q-matrices (Desmarais, 2012; Desmarais and Naceur, 2013).  

 The results of the topic models were then evaluated by two professional instructional designers 

who read the corresponding topic terms and also had access to the problem that crowdworkers provided 

KCs for, but they were not made aware of the expert-generated KCs that were previously used for the 

problems. These two experts worked collaboratively to construct interpretations of the topics, based on 

the topic five key terms that comprised them. The researchers were then tasked with identifying if these 

topic interpretation labels correspond to any of the expert-generated KCs for the problems. Therefore, 

the topic model outputs were interpreted by the researchers and compared to the KCs generated by 

experts. This was the evaluation phase of comparing the topic model outputs, ran on the crowdsourced 

KCs, to the ground truth expert-generated KCs for the math and writing problems.  

 

4. Results 

 
The five topics from both the LDA and NMF models for the math experiment data, along with the top 

five most common terms associated with each topic, are presented in Table 2. This table contains a topic 

label column, which was constructed as an interpretation of terms by the two instructional designers 

during the evaluation phase. The two models share similar topics and the top five terms that comprise 

them are also comparable. Both models include topics that involve basic arithmetic operations used in 

the problem, such as addition, subtraction, and multiplication. They differ in that the LDA one contains 

a topic mentioning the order of operations, which is applicable to the problem. The NMF model also 

contains two unique topics that mention calculations with double digit numbers and another that 

includes division. Interestingly, division is not used in the problem, while the problem does involve 

order of operations. 

 

Table 2. Top 5 terms from 5 topics identified by the LDA and NMF models from the math data 

Topic # Topic Terms Topic Label 

LDA Model 

1 wall, calculation, _num, read, 

equation 

Perform a calculation using the wall values 

2 area, door, rectangle, subtract, wall Subtracting the area of the door from the wall 

3 multiplication, order, know, 

operation, subtract 

Knowing to perform order of operations 

4 number, add addition, subtract, 

digit 

Adding & subtracting numbers 

5 multiply, subtraction, number, digit, 

double 

Multiplying & subtracting double digit 

numbers 

NMF Model 

1 number, multiply, add, digit, 

subtract 

Multiplying & subtracting double numbers 

2 multiplication, skill, determine, 

double, digit 

Multiplying double digit numbers 

3 subtraction, skill, digit, length, 

width 

Subtraction using the length and width of a 

shape 

4 addition, skill, word, foot, division Adding and dividing numbers 

5 area, subtract, door, know, 

rectangle 

Subtracting the door area from the wall 

 



The five topics from both the LDA and NMF models for the writing experiment data, along with 

the top five most common terms associated with each topic, are presented in Table 2. This table also 

contains the topic label constructed during the evaluation phase. The topic terms between the two 

models are more diverse than those in the math experiment, although there is still overlap between the 

topics, as expected. Both models share a topic indicative of identifying the position of the sentence’s 

subject and agent. Relatedly, they also share a topic of understanding the structure of a sentence and an 

understanding of how to write. Interestingly, the LDA model’s topic for understanding how to write 

also includes mention of the english language, which is not present in the NMF model’s corresponding 

topic. Another key topic difference is that the NMF model has two unique topics of identifying the 

passive voice of a sentence and has critical thinking and problem solving skills. The final noticeable 

topic difference is that the LDA model has a topic indicative of understanding verb tenses, which is not 

present in the NMF one. 

 

Table 3. Top 5 terms from 5 topics identified by the LDA and NMF models from the writing data 

Topic # Topic Terms Topic Label 

LDA Model 

1 agent, know, subject, identify, position Identifying the subject and agent’s position 

2 verb, tense, knowledge, understand, 

know 

Understanding verb tenses 

3 sentence, structure, understand, 

construction, determine 

Understanding the structural components 

of a sentence 

4 english, skill, understand, language, 

writing 

Understanding the English language and 

how to write it 

5 comment, writing, english, mean, 

language 

Understanding the English language and 

how to write it 

NMF Model 

1 english, comment, voice, passive, 

interpret 

Identifying the passive voice of a sentence 

2 know, agent, subject, position, identify Identifying the subject and agent’s position 

3 sentence, knowledge, structure, 

determine, meaning 

Understanding the structural components 

of a sentence 

4 skill, writing, paragraph, require, word Knowing how to write 

5 problem, thinking, critical, solve, math Critical thinking and problem solving 

skills 

 

After the creation of the topic interpretations during the evaluation phase, the researchers matched the 

topics to any corresponding expert-generated KCs for both the math and writing problems. The 

matching of any topics to these KCs is presented in Table 4. As depicted, each domain had expert-

generated KCs that were not addressed by a topic from either model. 

The math experiment’s first LDA model topic resembles the compose-by-addition KC as it 

mentions the calculation of values from the wall depicted in the problem. Both models mention 

subtracting across multiple topics, but only the second LDA topic and the fifth NFM topic address the 

subtract KC. To indicate this KC, the topic needed to explicitly mention subtracting the area of one 

shape (door) from another (wall or rectangle). The final math KC, rectangle-area, was not present in 

any model’s topic, although it may be argued that the previous topics for the subtract KC also include 

this one implicitly.  

The first two expert-generated KCs for the writing problem are not identified by any topics in 

either model. Both contain domain-specific vocabulary, clause and discourse, which is not included in 

the top five terms for the topics. Topic three for both the LDA and NMF models indicates the structure 

of the sentence, which is a step towards these KCs, but not inclusive enough to match either of them. 

Both models had a single topic that matched the subject-position KC, as the topics explicitly mention 

the position of the subject and agent in the sentence. The final expert-generated KC, verb-form, is 

partially addressed by the second LDA topic, which mentions verb tense. However, the NFM model’s 

first topic more explicitly addresses this KC, as it specific the passive voice of the sentence.  

 



 

Table 4. Expert-generated KCs in the math (M) and writing (W) experiment domains compared against 

the topics generated by the two models. 

KC (Domain) LDA Topic # NMF Topic # 

compose-by-addition (M) 1 - 

subtract (M) 2 5 

rectangle-area (M) - - 

id-clause (W) - - 

discourse-level (W) - - 

subject-position (W) 1 2 

verb-form (W) 2 1 

 

5. Discussion 

 
Firstly, we wanted to better understand how we could have crowdworkers assist in the generation and 

mapping of KCs to problems across the math and writing domains. Using the results of the evaluation 

from expert-generated KC to topic, crowdworkers appear to have similar performance in terms of the 

number of expert KCs they were able to generate. The expert-generated KCs in the math domain had 

little domain vocabulary or included terms that were not mentioned in the question. Only ‘rectangle’ 

was explicitly used in the KCs, which is not included in the question text, but that is also a more common 

word and does not require domain knowledge to know. On the other hand, all four expert-generated 

KCs in the writing experiment contain vocabulary specific to the problem and its domain. It is not a 

surprise that the first two, which include clause and discourse, were not indicated by participants. These 

terms are jargon and not as common, particularly for those who may not have had an English writing 

course recently or speak it as a secondary language. Additionally, the math domain problem comes from 

a middle school course while the writing domain one comes from an undergraduate college course. It 

was surprising at first that participants were able to match the subject-position KC, however those terms 

are explicitly mentioned in the instructional text of the problem. It appears that the strategy some 

participants employed was using the instructions of the question to generate the KCs. This is akin to 

previous work that uses different machine learning models to predict KCs, which often employs the 

problem’s text as a key feature (Karlovčec et al., 2012).   

 Secondly, we wanted to see how topic modeling could be leveraged with crowdsourced KCs to 

produce results comparable to that of experts. This process yields a large amount of text data, that is 

both a mixture of applicable, redundant, and irrelevant all at the same time. To help make sense of this 

data in a less time-consuming matter, we turned to topic modeling techniques to aggregate the data. We 

found that the topics these models produce are indicative of several KCs for the problems that are akin 

to one’s experts previously generated and used for them. In the math experiment, two out of three of 

the expert KCs were produced between both models. In the writing experiment, another two of the 

expert KCs were produced out of four in total. Ultimately both models across each domain were 

comparable, resulting in almost identical topics that related back to an expert-generated KC. The LDA 

model for math had a slight gain over the NMF one, in that it had a topic comparable to another KC 

that the NMF one did not. However, this was perhaps the weakest topic-to-KC matching, so we cannot 

claim LDA performs better than NMF or vice-versa for this task.  

 The difference in topics between the two models for the math domain were not useful in the 

identification of an expert-generated KC. These different topics between the two addressed aspects that 

were still relevant to the problem, such as double-digit numbers and order of operations, but they were 

not the specified KCs for the problem. This was also true for the topics both math models shared, while 

they were mostly applicable to the problem due to indicating multiplication and addition, they were not 

relevant KCs. The LDA and NFM models in the writing domain had similar results, in that the topics 

that differed between the two pertained to the problem, but were not a KC for it. Interestingly, the LDA 

model for the writing domain was the only model that had a duplicate topic within its own top five 

topics, which was about understanding and writing the English language. While that may suggest 

participants thought such a skill was applicable to the problem, and it is, it did not match an expert-

generated KC. While that is a relevant skill needed for the problem, it is not a KC the problem intends 

to measure, as the target learner is that in an undergraduate writing course. 



5.1 Limitations 
 

In our study, we utilized two forms of topic modeling, LDA and NMF, to group potential KCs 

contributed by crowdworkers. Different techniques for topic modeling may produce more accurate 

results or ones that are more interpretable by humans (Chang et al., 2009). While performing this 

modeling on the data helps to aggregate it into a more manageable fashion, human interpretation is still 

heavily required to make use of the data. Additionally, to keep the data collection brief, participants did 

not receive explicit instruction on the desired granularity or process of generating KCs. Measuring a 

participant’s existing domain knowledge and training them on this task could produce more reliable 

results (Koedinger and Nathan, 2004). Finally, while we had multiple researchers and experts involved 

in the process of interpreting the topics and evaluating their matches to expert-generated KCs, there is 

still a subjective element at play with what topic or KC a contribution may fall under. Making use of 

existing text mining techniques for this may help to increase replicability of this process (Wiedemann, 

2016), along with including more data coders in this process. 
 

6. Conclusion and Future Work 

 
In this work, we solicited the knowledge components of a mathematics problem and an English writing 

problem from crowdworkers with different expertise and backgrounds. Our results indicate that 

crowdworkers can be effectively leveraged to assist in the process of generating knowledge components 

for problems in our math and writing domains. To our knowledge, this work is among the first to 

investigate the use of crowd workers to generate knowledge components for assessment activities. We 

found that roughly half of the KCs generated by experts and previously used for the problems in an 

educational setting were able to be matched by KCs generated by the crowdworkers. The LDA and 

NMF topic models created groupings that when interpreted by a human, were akin to the expert 

generated ones. Several of these topics proved useful, as they indicated KCs of the problems, but work 

remains to improve both interpretability and matching more domain-specific KCs. Ultimately the 

results of this work support the benefits of engaging the crowd in more nuanced learning science tasks, 

as well as encourage the adoption of a similar process that utilizes learnersourcing. With continued 

improvement of the efficiency and efficacy of this process, we envision further use of crowdworkers to 

generate high quality and accurate knowledge components that easily scale up to benefit both learners 

and education providers.  

Building upon this work, we plan to integrate this process in a learnersourced context, where 

participants (i.e., students) potentially have more commitment and domain knowledge that could be 

leveraged (Paulin and Haythornthwaite, 2016). This would enable us to properly train them to provide 

such KCs throughout the course, rather than completing the task once with only a brief instruction like 

the crowdworkers did in this study. Ultimately, we envision a workflow in which students submit KCs 

for problems; these problems are then peer reviewed and presented to the teachers (or relevant parties) 

to help them confirm applicable KCs and improve the assessment items. This procedure is analogous 

to the find-fix-verify pattern in crowdsourcing, which has been shown to be effective (Bernstein, 2013). 

This study demonstrates the first step in developing such a workflow, providing initial insights into how 

crowdsourced contributions might be leveraged in the KC mapping process. While the analyses we 

performed here may end up taking more time than the task of generating the KCs themselves, they 

contribute to an eventual domain-independent workflow that can greatly expedite such tasks. 

Our findings also suggest several directions for future research in crowdsourcing KCs and 

involving crowdworkers in instructional design tasks without the need for prior training. Performing a 

similar study involving different domains at various grade levels might yield interesting results as well, 

especially when crowdworkers might have more familiarity thanks to their diverse backgrounds. 

Additionally, studying the impact of grouping crowdworkers on their reported expertise levels and then 

having them generate KCs for problems of varying difficulty levels could introduce useful design 

decisions for implementing this workflow into a digital learning environment. Ultimately, we would 

like to scale this up into a learnersourced context, such as embedding these prompts into an online 

course. Our next step is to leverage different natural language processing techniques outside of topic 

modeling, such as keyphrase extraction or summarization, in order to achieve higher accuracy and 

reduce the need for human input into the interpretability aspect of this work. 
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