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Abstract. In this research, we explore how expertise is shown in both humans
and AI agents. Human experts follow sets of strategies to complete domain
specific tasks while AI agents follow a policy. We compare machine generated
policies to human strategies in two game domains, using these examples we
show how human strategies can be seen in agents. We believe this work can
help lead to a better understanding of human strategies and expertise, while also
leading to improved human-centered machine learning approaches. Finally, we
hypothesize how a continuous improvement system of humans teaching agents
who then teach humans could be created in future intelligent tutoring systems.
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1 Introduction

In this research, we explore how AI agent policies might be used to teach humans. In
complex tasks humans generate strategies which can be applied in many different
situations. Combinations of strategies that lead to optimal outcomes can lead to
expertise in a domain, although there is still no consensus among researchers as to what
makes a person an expert and how expertise is defined. We explore the interactions of
policies and strategies, looking at how both relate to expertise. Our long term goal is to
see how humans can help teach agents and agents can help teach humans in a con-
tinuous loop. A start to this goal is a comparison of agent policies, generated with
different techniques on several complex game domains, with strategies generated from
human players.

2 Background and Domains

Expertise has been the subject at the crossroads of Psychology and Computer Science
for some time. The Nature of Expertise [14] explored a wide variety of domains from
human typing to sports to ill-defined domains. A key insight from this work is that in
the early development of AI systems, expertise was tightly related to the concept of
encoding human strategies into machines, such as early work involving chess players
and intelligent tutors [4]. As work continued, the Psychology field moved into
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architectures of cognition defined by ACT-R [1] and Soar [18] as examples. Computer
Science moved towards agents and policy creation focusing early on reinforcement
learning [29] and now advanced techniques built on deep learning [19].

The question of what exactly defines someone as an expert is still an open question
and has a lot to do with the particular domain that is being studied. In chess, Chase and
Simon posited that it takes 10,000 h of study to become an expert [4]. That number has
also been suggested as the rough number of hours to become an expert musician [11]
and is a general theory of expertise [10], although largely due to Simon’s chess work.
In the case of learning systems, we often define mastery using some form of knowledge
tracing. These systems often set “mastery” as a probabilistic value that a learner knows
a particular skill. The value of mastery varies on skills and domains, but a value of 90%
or 95% are assumed to have achieved mastery [8]. Understanding skills that are used to
solve problems has also been explored in many domains [16, 25]. Tasks to elicit
knowledge from experts, such as cognitive task analysis (CTA) have been used by
cognitive scientists to better understand the strategies that experts use, but may not
explicitly recognize [6].

AI has been used now for decades to create agents that mimic human behavior.
These agents are generally driven by a policy created by some form of machine
learning, such as Q-learning [29]. The policy tells the AI agent what to do given a
certain set of conditions. This is most often defined as a state-action graph that suggests
the best possible next action for an agent assigned to a given state. In education, agents
driven by policies have long been a foundational part of intelligent tutors and adaptive
learning. Work has been done in modeling learning as a policy generated to predict
what a student knows and what the next best instructional lesson is for a particular
student [24]. Other research has been done using reinforcement learning (RL) with a
focus on what pedagogical action would be best to use for a student when multiple
actions are available [5]. Most closely associated with the research we are doing is
work on the automatic generation of hints and feedback [23, 27]. This work uses state
graphs and RL to identify the best path for solving problems. Then generates a just in
time hint or provides feedback that can lead the student down a better path for learning.

We focus on two complex game domains: connect four (C4) and Space Invaders
(SI). Both are well known games and chosen because of their simplicity of play and
known human strategies for winning. They also have multiple agent implementations
that we can exploit, which are explained in detail below.

The objective of C4 is to align four game pieces of the same color in a row, either
diagonally, horizontally, or vertically. There are three possible states for each of the
forty-two available game spaces. The board spaces can be occupied by the turn players
piece, the opponent’s piece, or it can be empty. This means there are 342 (� 1020)
moves possible on the game board of seven columns by six rows, ranging from zero to
forty-two pieces on it. Using binary decision diagrams, it has been shown there are
exactly 4,531,985,219,092 legal board configurations [9]. Additionally, C4 is a solved
zero-sum game, of moderate complexity, where the outcome of the game can correctly
be predicted from any state [31]. There are many variants of C4 agents [12, 13]. Recent
agents that solve the game using temporal difference learning, achieved a win per-
centage close to perfect, but require several millions of self-play games for training,
thus being far off human performance [2]. Another study found that using 1,565,000

270 J. Stamper and S. Moore



games for training data, their agent could reach an 80% success rate, but it required
between 2–4 million games to produce what would be considered a strong-playing one
[30]. The most successful agents of C4 make use of the MiniMax algorithm, which
consists of heuristic evaluation function that is akin to these human strategies. It is
often cited as the standard to compare different agent implementations against, as
MiniMax can win virtually every time, depending on its search depth, with no training
data required [30]. This is powerful since C4 is a zero sum game, and the heuristic
function has the agent follow a set of optimal human-like strategies. The evaluation
function can be summarized by five strategy points: (1) If there is a winning move, take
it (2) If the opponent has a winning move, prevent it (3) Take the center square over
edges and corners (4) Take corner squares over edges (5) Take edges if nothing else is
available.

Just implementing a simple human strategy can have a profound effect on the size
of the agents search space and number of game plays needed to generate an expert
agent. For example, one basic strategy is when given the opportunity to go first, a
player should always take the center position on the board, and if going second the
player should take this position if available. From a simple computation we can see that
this prunes 6 of the 7 high level branches in the initial graph leading to tremendously
less possible game states in the expert player.

Space Invaders was a classic arcade game and one of the games available in the
Atari Grand Challenge dataset (AGC) [17] based on the classic Atari 2600 home
console game system. In dataset-1 of the AGC, there are 445 human game plays of SI.
SI also represents a potentially easier game to follow in the Atari game space because
the game dynamics remove some of the available moves. While Atari games allow for
the use of four directional movements (left, right, up, down) plus a button, SI only
allows the player to move left or right and use the button to shoot. This limits the
complexity of this game compared to some others.

There are a number of human strategies that we have discovered from discussions
with an expert of the game. This expert was able to achieve scores greater than 98% of
all human players as reported by the Atari Grand Challenge site. The human strategies
include (1) because only one shot can be on the screen at a time shooting lower
invaders leads to faster shooting, (2) shooting entire columns from the left side first
give additional time because of the right to left movement of the invaders, and (3) when
the invaders reach the left side and begin moving right shoot the bottom row and move
to shooting the rightmost column. These strategies keep the invaders largely in a square
formation. It is disadvantageous to split the invaders into two squares, because that
requires additional movement to get a shot off.

Using the Arcade Learning Environment (ALE) [3], agents have been created and
trained to play Space Invaders. A summary of the scores of three agent based on
different algorithms in a replication study of a number of previously built agents in the
ALE framework [21] claimed agents did exceed human capabilities at times, although
they did not average a score that was higher than the top 5% of human players
presented in the AGC dataset. When we looked at data from the DQN agent, which was
driven by a deep learning algorithm, visualizing the RAM states based on a t-SNE
embedding [22] shows that many of the clusters do show evidence of human strategies,
such as keeping the invaders in a single square formation. Watching replays of expert
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agent players also shows expert human strategies, but more work is needed to delve
into the actual policy to find clear evidence of a particular strategy.

3 Discussion and Conclusions

Heuristic driven policies, by means of a given evaluation function, are widely used to
solve games such as chess, C4, Othello and Go [7]. The evaluation functions in these
agents use information about the game. Much of this is directly related to a strategy that
a human player would follow, as addressed previously with C4. These strategies
represent expertise in a human player and are clearly identifiable in agent play. In the
development of agents, it is the human encoding the strategy into the AI using their
knowledge of the game. The majority of game-playing agents, however, make use of
deep neural nets to develop their policies, which makes them black-box and often
difficult to interpret by a human. Recent work has looked at making policies developed
this way programmatically interpretable, but much works remains for humans to be
able to clearly articulate what many of these agents have learned from their training
[32].

It is debatable if these deep reinforcement learning agents make use of explicit
strategies as they execute their given policies. A recent approach uses saliency maps to
highlight key decision regions for agents playing Atari 2600 games, and found that
their SI agent learned a sophisticated aiming strategy [15]. Another way to make
policies less black-box, is to break the policy down into smaller subtasks that are
comprised of a few actions that feed back into the overall policy [20]. These techniques
of breaking down policies into smaller interpretable strategies and visually representing
the mechanisms of an agent’s policy are steps toward having humans learn strategies
from agents, without directly encoding any into the agent itself.

Some previous work looks to use human seeding of policies in educational domains
[26]. Another such study found that training on human data; they could achieve
comparable scores to state-of-the-art reinforcement learning techniques and even beat
the scores using just the top 50% of their collected data for more complicated games
[17]. Combining a method that not only trains agents on expert human data, but also
encodes their strategies into a form of an evaluation function has the potential to yield
successful agents that require less computational time, while performing at greater
levels than comparable agents.

We can identify human strategies in the policies generated by agent through post
hoc human inspection. In the future, we will explore how to automate the process of
identifying strategies within the agent policies similar to previous work on less com-
plex educational domains [28]. This will require progress on explainable AI to extract
human readable information from increasingly black-box policies. We plan to explore a
number of additional domains where data and agents are available for study.
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